首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   36篇
地质学   28篇
海洋学   5篇
天文学   6篇
自然地理   8篇
  2020年   1篇
  2018年   6篇
  2017年   5篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   9篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
41.
The solubility of chromium in chlorite as a function of pressure, temperature, and bulk composition was investigated in the system Cr2O3–MgO–Al2O3–SiO2–H2O, and its effect on phase relations evaluated. Three different compositions with X Cr = Cr/(Cr + Al) = 0.075, 0.25, and 0.5 respectively, were investigated at 1.5–6.5 GPa, 650–900 °C. Cr-chlorite only occurs in the bulk composition with X Cr = 0.075; otherwise, spinel and garnet are the major aluminous phases. In the experiments, Cr-chlorite coexists with enstatite up to 3.5 GPa, 800–850 °C, and with forsterite, pyrope, and spinel at higher pressure. At P > 5 GPa other hydrates occur: a Cr-bearing phase-HAPY (Mg2.2Al1.5Cr0.1Si1.1O6(OH)2) is stable in assemblage with pyrope, forsterite, and spinel; Mg-sursassite coexists at 6.0 GPa, 650 °C with forsterite and spinel and a new Cr-bearing phase, named 11.5 Å phase (Mg:Al:Si = 6.3:1.2:2.4) after the first diffraction peak observed in high-resolution X-ray diffraction pattern. Cr affects the stability of chlorite by shifting its breakdown reactions toward higher temperature, but Cr solubility at high pressure is reduced compared with the solubility observed in low-pressure occurrences in hydrothermal environments. Chromium partitions generally according to \(X_{\text{Cr}}^{\text{spinel}}\) ? \(X_{\text{Cr}}^{\text{opx}}\) > \(X_{\text{Cr}}^{\text{chlorite}}\) ≥ \(X_{\text{Cr}}^{\text{HAPY}}\) > \(X_{\text{Cr}}^{\text{garnet}}\). At 5 GPa, 750 °C (bulk with X Cr = 0.075) equilibrium values are \(X_{\text{Cr}}^{\text{spinel}}\) = 0.27, \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.08, \(X_{\text{Cr}}^{\text{garnet}}\) = 0.05; at 5.4 GPa, 720 °C \(X_{\text{Cr}}^{\text{spinel}}\) = 0.33, \(X_{\text{Cr}}^{\text{HAPY}}\) = 0.06, and \(X_{\text{Cr}}^{\text{garnet}}\) = 0.04; and at 3.5 GPa, 850 °C \(X_{\text{Cr}}^{\text{opx}}\) = 0.12 and \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.07. Results on Cr–Al partitioning between spinel and garnet suggest that at low temperature the spinel- to garnet-peridotite transition has a negative slope of 0.5 GPa/100 °C. The formation of phase-HAPY, in assemblage with garnet and spinel, at pressures above chlorite breakdown, provides a viable mechanism to promote H2O transport in metasomatized ultramafic mélanges of subduction channels.  相似文献   
42.
An ilmenite-garnet-bearing schist from the medium-grade metapelite complex of the Mandanici Unit in the Peloritani Mountains has been investigated to constrain the P-T conditions attained in this sector of the southern European Hercynian chain. Microprobe investigations assisted by statistical handling of X-ray maps via principal component analysis allowed us to better elucidate the porphyroblast-matrix relationships, the geometry of the elemental distribution in garnet porphyroblasts and the average volume percentage of the reactant garnet during retrograde metamorphic evolution. Selected microprobe data were then used to constrain, by means of P-T pseudosections, the main P-T stages of the metamorphic evolution, using the XRF bulk-rock chemistry as the equilibrium chemical composition for the prograde and peak stages and an effective bulk-rock composition for the retrograde one. Peak metamorphic P-T estimates (~530?°C; 0.9?GPa) are consistent with a Hercynian crustal thickening stage at middle-lower crustal conditions, while subsequent evolution, constrained at 420–460?°C; 0.30–0.60?GPa, depicts a retrograde clockwise P-T trajectory linked to exhumation under likely extensional shearing conditions. The results obtained in this paper lead to envisage a new scenario for the crustal evolution of the Peloritani Mountains and stimulate a revision of previous interpretations in the light of the new investigation techniques.  相似文献   
43.
We calculated the expected impact on the Italian coast of the Adriatic Sea of a large set of tsunamis resulting from potential earthquakes generated by major fault zones. Our approach merges updated knowledge on the regional tectonics and scenario-like calculations of expected tsunami impact. We selected six elongated potential source zones. For each of them we determined a Maximum Credible Earthquake and the associated Typical Fault, described by its size, geometry and kinematics. We then let the Typical Fault float along strike of its parent source zone and simulated all tsunamis it could generate. Simulations are based on the solution of the nonlinear shallow water equations through a finite-difference technique. For each run we calculated the wavefields at specified simulation times and the maximum water height field (above mean sea level), then generated travel-time maps and maximum water height profiles along the target coastline. Maxima were also classified in a three-level code of expected tsunami threat. We found that the southern portion of Apulia facing Albania and the Gargano promontory are especially prone to the tsunami threat. We also found that some bathymetric features are crucial in determining the focalization-defocalization of tsunami energy. We suggest that our results be taken into account in the design of early-warning strategies.  相似文献   
44.
The analysis of the Irpinia earthquake of 3 April 1996 (ML = 4.9), based on strong motion and short period local data, shows that it was a normal faulting event located within the epicentral area of the MS 6.9, 1980, earthquake. It was located at 40.67° N and 15.42° E at a depth of 8 km. The local magnitude (4.9) has been computed from the VBB stations of the MedNet network. The moment magnitude is Mw = 5.1 and the seismic moment estimated from the ground acceleration spectra is 5.0 1023 dyne cm. Spectral analysis of the strong motion recordings yields a Brune stress drop of 111 bars and a corner frequency of 1 Hz. The source radius associated to these values of seismic moment and stress drop is 1.3 km. The focal mechanism has two nodal planes having strike 297°, dip 74°, rake 290° and strike 64°, dip 25° and rake 220°, respectively. A fault plane solution with strike 295° ± 5°, dip 70° ± 5°, and rake 280° ± 10° is consistent with the S-wave polarization computed from the strong motion data recorded at Rionero in Vulture. We discuss the geometry and the dimensions of the fault which ruptured during the 1996 mainshock, its location and the aftershock distribution with respect to the rupture history of the 1980 Irpinia earthquake. The distribution of seismicity and the fault geometry of the 1996 earthquake suggest that the region between the two faults that ruptured during the first subevents of the 1980 event cannot be considered as a strong barrier (high strength zone), as it might be thought looking at the source model and at the sequence of historical earthquakes revealed by paleoseismological investigations.  相似文献   
45.
46.
In situ monazite microprobe dating has been performed, for the first time, on trondhjemite and amphibolite facies metasediments from the Peloritani Mountains in order to obtain information about the age of metamorphism and intrusive magmatism within this still poorly known sector of the Hercynian Belt. All samples show single-stage monazite growth of Hercynian age. One migmatite and one biotitic paragneiss yielded monazite ages of 311 ± 4 and 298 ± 6 Ma, respectively. These ages fit with previous age determinations in similar rocks from southern Calabria, indicating a thermal metamorphic peak at about 300 Ma, at the same time as widespread granitoid magmatism. The older of the two ages might represent a slightly earlier event, possibly associated with the emplacement of an adjacent trondhjemite pluton, previously dated by SHRIMP at 314 Ma. No evidence for pre-Hercynian events and only a little indication for some monazite crystallization starting from ca. 360 Ma were obtained from monazite dating of the metasediments, suggesting either a single-stage metamorphic evolution or a significant resetting of the monazite isotope system during the main Hercynian event (ca. 300 Ma). Rare monazite from a trondhjemite sample yields evidence for a late-Hercynian age of about 275 Ma. This age is interpreted as representing a post-magmatic stage of metasomatic monazite crystallization, which significantly postdates the emplacement of the original magmatic body.  相似文献   
47.
This work addresses the use of remote sensing imagery to quantify the built environment and its spatial and temporal changes. It identifies building footprint map, building location map and built-up area map as information products that can be used to quantify physical exposure, one of the variables required in disaster risk assessments. The paper also reviews urban land use maps and urban classes in land cover maps as potential source for deriving exposure information. The paper focuses on the latest generation of satellite-borne remote sensing imaging systems that deliver high-resolution optical imagery able to resolve buildings and other three-dimensional man-made constructions. This work also reviews the semantics, the spatial unit used to define physical exposure, image processing procedures and change techniques.  相似文献   
48.
The medium- to high-grade polymetamorphic basement rocks of the Peloritani Mountains, northern Sicily, include large volumes of augen gneiss of controversial age and origin. By means of a geochemical and SHRIMP zircon study of representative samples, the emplacement age of the original granitoid protoliths of the augen gneisses and the most likely processes and sources involved in that granitoid magmatism have been determined. U–Pb dating of three samples from widely spaced localities in the Peloritani Mountains yielded igneous protolith ages of 565 ± 5, 545 ± 4 and 545 ± 4 Ma, respectively. These late Ediacaran/early Cambrian ages are much older than was previously assumed on geological grounds, and are typical of the peri-Gondwanan terranes involved in the geodynamic evolution of the northern Gondwana margin at the end of the Avalonian–Cadomian orogeny. Major and trace element compositions and Sr–Nd isotopic data, in combination with zircon inheritance age patterns, suggest that the granitoid protoliths of the Sicilian and coeval Calabrian augen gneisses were generated by different degrees of mixing between sediment- and mantle-derived magmas. The magmas forming the ca. 545 Ma inheritance-rich granitoids appear to have had a significant contribution from partial melting of paragneiss that is the dominant rock type in the medium- to high-grade Peloritanian basement. The closeness of the inferred deposition age of the greywacke protoliths of the paragneisses with the intrusion age of the granitoids indicates rapid latest Precambrian crustal recycling involving erosion, burial, metamorphism to partial melting conditions, and extensive granitoid magmatism in less than ca. 10 Ma.  相似文献   
49.
We present a strategy for obtaining fault-based maximum observable shaking (MOS) maps, which represent an innovative concept for assessing deterministic seismic ground motion at a regional scale. Our approach uses the fault sources supplied for Italy by the Database of Individual Seismogenic Sources, and particularly by its composite seismogenic sources (CSS), a spatially continuous simplified 3-D representation of a fault system. For each CSS, we consider the associated Typical Fault, i.e., the portion of the corresponding CSS that can generate the maximum credible earthquake. We then compute the high-frequency (1–50?Hz) ground shaking for a rupture model derived from its associated maximum credible earthquake. As the Typical Fault floats within its CSS to occupy all possible positions of the rupture, the high-frequency shaking is updated in the area surrounding the fault, and the maximum from that scenario is extracted and displayed on a map. The final high-frequency MOS map of Italy is then obtained by merging 8,859 individual scenario-simulations, from which the ground shaking parameters have been extracted. To explore the internal consistency of our calculations and validate the results of the procedure we compare our results (1) with predictions based on the Next Generation Attenuation ground-motion equations for an earthquake of Mw 7.1, (2) with the predictions of the official Italian seismic hazard map, and (3) with macroseismic intensities included in the DBMI04 Italian database. We then examine the uncertainties and analyse the variability of ground motion for different fault geometries and slip distributions.  相似文献   
50.
The Monte Nuovo eruption is the most recent event that occurred at Phlegrean Fields (Italy) and lasted from 29 September to 6 October 1538. It was characterized by 2 days of quasi-sustained phreatomagmatic activity generating pumice-bearing pyroclastic density currents and forming a 130-m-high tuff cone (Lower Member deposits). The activity resumed after a pause of 2 days with two discrete Vulcanian explosions that emplaced radially distributed, scoria-bearing pyroclastic flows (Upper Member deposits). The juvenile products of Lower and Upper Members are, respectively, phenocryst-poor, light-coloured pumice and dark scoria fragments with K-phonolitic bulk compositions, identical in terms of both major and trace elements. Groundmass is formed by variable proportions of K-feldspar and glass, along with minor sodalite and Fe-Ti oxide present in the most crystallized samples. Investigations of groundmass compositions and textures were performed to assess the mechanisms of magma ascent, degassing and fragmentation along the conduit and implications for the eruptive dynamics. In pumice of the Lower Member groundmass crystal content increases from 13 to 28 vol% from the base to the top of the sequence. Products of the Upper Member consist of clasts with a groundmass crystal content between 30 and 40 vol% and of totally crystallized fragments. Crystal size distributions of groundmass feldspars shift from a single population at the base of the Lower Member to a double population in the remaining part of the sequence. The average size of both populations regularly increases from the Lower to the Upper Member. Crystal number density increases by two orders of magnitude from the Lower to the Upper Member, suggesting that nucleation dominated during the second phase of the eruption. The overall morphological, compositional and textural data suggest that the juvenile components of the Monte Nuovo eruption are likely to record variations of the magma properties within the conduit. The different textures of pumice clasts from the Lower Member possibly reflect horizontal gradients of the physical properties (P, T) of the ascending magma column, while scoriae from the second phase are thought to result from the disruption of a slowly rising plug crystallizing in response to degassing. In particular, crystal size distribution data point to syn-eruptive degassing-induced crystallization as responsible for the transition in eruptive style from the first to the second phase of the eruption. This mechanism not only has been proved to profoundly affect the dynamics of dome-forming calc-alkaline eruptions, but may also have a strong influence in driving the eruption dynamics of alkaline magmas of intermediate to evolved compositions.Editorial responsibility: J. Donnelly-Nolan  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号