首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5768篇
  免费   225篇
  国内免费   89篇
测绘学   168篇
大气科学   546篇
地球物理   1445篇
地质学   1999篇
海洋学   549篇
天文学   754篇
综合类   22篇
自然地理   599篇
  2021年   60篇
  2020年   64篇
  2019年   86篇
  2018年   124篇
  2017年   116篇
  2016年   156篇
  2015年   144篇
  2014年   202篇
  2013年   323篇
  2012年   242篇
  2011年   263篇
  2010年   191篇
  2009年   304篇
  2008年   285篇
  2007年   262篇
  2006年   220篇
  2005年   188篇
  2004年   196篇
  2003年   189篇
  2002年   181篇
  2001年   133篇
  2000年   136篇
  1999年   113篇
  1998年   107篇
  1997年   91篇
  1996年   84篇
  1995年   85篇
  1994年   75篇
  1993年   64篇
  1992年   65篇
  1991年   69篇
  1990年   66篇
  1989年   59篇
  1988年   58篇
  1987年   65篇
  1986年   43篇
  1985年   73篇
  1984年   80篇
  1983年   72篇
  1982年   65篇
  1981年   76篇
  1980年   63篇
  1979年   57篇
  1978年   38篇
  1977年   54篇
  1976年   63篇
  1975年   46篇
  1974年   56篇
  1973年   47篇
  1972年   25篇
排序方式: 共有6082条查询结果,搜索用时 15 毫秒
881.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   
882.
An assessment of the likely benefits of assimilating in situ temperature (T) and salinity (S) observations from repeat glider transects and surface velocity observations from high-frequency radar arrays into an eddy-resolving ocean model is presented. The deployment of new shelf observation platforms around Australia is being undertaken through the Australian Integrated Marine Observing System program. In this study, various options for an observing system along the coast of New South Wales, Australia, are assessed for their benefits to an ocean forecast and reanalysis system. The forecast system considered here uses ensemble optimal interpolation (EnOI) for data assimilation. Using error estimates from the EnOI scheme, estimates of the theoretical analysis errors are calculated for different observing systems that include a range of remotely sensed and in situ observations. The results demonstrate that if HF radar observations are assimilated along with the standard components of the global ocean observing system, the analysis errors are likely to reduce by as much as 80% for velocity and 60% for T, S and sea-level in the vicinity of the observations. Owing to the relatively short along-shore decorrelation length-scales for T and S near the shelf, the glider observations are likely to provide the forecast system with a more modest gain.  相似文献   
883.
Statistical Downscaling of Wind Variability from Meteorological Fields   总被引:1,自引:0,他引:1  
Measurements show that on numerous occasions the low-level wind is highly variable across a large portion of south-eastern Australia. Under such conditions the risk of a large rapid change in total wind power is increased. While variability tends to increase with mean wind speed, a large component of wind variability is not explained by wind speed alone. In this work, reanalysis fields from the US National Centers for Environmental Prediction (NCEP) are statistically downscaled to model wind variability at a coastal location in Victoria, Australia. In order to reduce the dimensionality of the problem, the NCEP fields are each decomposed using empirical orthogonal function (EOF) techniques. The downscaling technique is applied to two periods in the seasonal cycle, namely (i) winter to early spring, and (ii) summer. In each case, data representing 2 years are used to form a model that is then validated using independent data from another year. The EOFs that best predict wind variability are examined. To allow for non-linearity and complex interaction between variables, all empirical models are built using random forests. Quantitatively, the model compares favourably with a simple regression of wind variability against wind speed, as well as multiple linear regression models.  相似文献   
884.
The influence of ocean–atmosphere coupling on the simulation and prediction of the boreal winter Madden–Julian Oscillation (MJO) is examined using the Seoul National University coupled general circulation model (CGCM) and atmospheric—only model (AGCM). The AGCM is forced with daily SSTs interpolated from pentad mean CGCM SSTs. Forecast skill is examined using serial extended simulations spanning 26 different winter seasons with 30-day forecasts commencing every 5 days providing a total of 598 30-day simulations. By comparing both sets of experiments, which share the same atmospheric components, the influence of coupled ocean–atmosphere processes on the simulation and prediction of MJO can be studied. The mean MJO intensity possesses more realistic amplitude in the CGCM than in AGCM. In general, the ocean–atmosphere coupling acts to improve the simulation of the spatio-temporal evolution of the eastward propagating MJO and the phase relationship between convection (OLR) and SST over the equatorial Indian Ocean and the western Pacific. Both the CGCM and observations exhibit a near-quadrature relationship between OLR and SST, with the former lagging by about two pentads. However, the AGCM shows a less realistic phase relationship. As the initial conditions are the same in both models, the additional forcing by SST anomalies in the CGCM extends the prediction skill beyond that of the AGCM. To test the applicability of the CGCM to real-time prediction, we compute the Real-time Multivariate MJO (RMM) index and compared it with the index computed from observations. RMM1 (RMM2) falls away rapidly to 0.5 after 17–18 (15–16) days in the AGCM and 18–19 (16–17) days in the CGCM. The prediction skill is phase dependent in both the CGCM and AGCM.  相似文献   
885.
An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979–2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichón eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichón eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed.  相似文献   
886.
Dairy farmers face increasing pressure to decrease environmental impact while remaining economically viable. Adaptation of farm management practices in response to seasonal climate forecasts may be one means of achieving these objectives. This paper describes the interactive and iterative process by which farmers, researchers, extension agents, regulatory agencies, and other stakeholders collaborated to create, calibrate, and validate the Dynamic North Florida Dairy Farm model (DyNoFlo), a whole-farm decision support system to decrease nitrogen leaching while maintaining profitability under variable climate conditions. Participatory modeling may enhance the creation of adoptable and adaptable user-friendly models that include environmental, economic and biophysical components. By providing farmers, policy makers, and other stakeholders with a more holistic view of current practices, common ground among them was more easily identified and collaboration was fostered. Farmer values included willingness to be good environmental stewards when they are profitable. The participatory research and development process enhanced understanding of and potential adaptation to seasonal climate variability conditioned to the El Niño Southern Oscillation (ENSO) phases in light of increasing environmental regulations and economic challenges. Adoption of the collaboratively-developed DyNoFlo is expected to be higher than usual because stakeholders feel greater ownership of the final product.  相似文献   
887.
This paper formally introduces the concept of mitigation as a stochastic control problem. This is illustrated by applying a digital state variable feedback control approach known as Non-Minimum State Space (NMSS) control to the problem of specifying carbon emissions to control atmospheric CO2 concentrations in the presence of uncertainty. It is shown that the control approach naturally lends itself to integrating both anticipatory and reflexive mitigation strategies within a single unified framework. The framework explicitly considers the closed-loop nature of climate mitigation, and employs a policy orientated optimisation procedure to specify the properties of this closed-loop system. The product of this exercise is a control law that is suitably conditioned to regulate atmospheric CO2 concentrations through assimilating online information within a 25-year review cycle framework. It is shown that the optimal control law is also robust when faced with significant levels of uncertainty about the functioning of the global carbon cycle.  相似文献   
888.
889.
The conditional probabilistic scenario analysis combines statistical methods of uncertainty analysis at parameter level with storylines which recognize the deep uncertainty that exists for several underlying trends. The model calculations indicate that cumulative 21st century emissions could range from 800 to 2500 GtC in the absence of climate policy. This range originates partly from the underlying storylines, and partly from the probabilistic analysis. Among the most important parameters contributing to the uncertainty range are uncertainty in income growth, population growth, parameters determining energy demand, oil resources and fuel preferences. The contribution of these factors is also scenario-dependent.  相似文献   
890.
The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3-D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号