首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   2篇
  国内免费   1篇
测绘学   9篇
大气科学   7篇
地球物理   12篇
地质学   33篇
天文学   17篇
综合类   1篇
自然地理   2篇
  2022年   5篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   8篇
  2017年   8篇
  2016年   5篇
  2015年   5篇
  2014年   10篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1990年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有81条查询结果,搜索用时 234 毫秒
71.
We report atmospheric turbulence parameters, namely atmospheric seeing, tilt-anisoplanatic angle(θ_0) and coherence time(Τ_0), measured under various sky conditions, at Vainu Bappu Observatory in Kavalur. Bursts of short exposure images of selected stars were recorded with a high-speed, frame-transfer CCD mounted on the Cassegrain focus of a newly commissioned 1.3 m telescope. The estimated median seeing is ≈ 1.85 " at wavelength of ~ 600 nm, the image motion correlation between different pairs of stars is ~44% for θ0≈ 36" and mean Τ_0 is ≈ 2.4 ms. This work was motivated by the design considerations and expected performance of an adaptive optics system that is currently being planned for the telescope.  相似文献   
72.
Using multiwavelength observations from the Solar Dynamics Observatory (SDO) and the Solar Terrestrial Relations Observatory (STEREO), we investigate the mechanism of two successive eruptions (F1 and F2) of a filament in active region NOAA 11444 on 27 March 2012. The filament was inverse J-shaped and lay along a quasi-circular polarity inversion line (PIL). The first part of the filament erupted at \(\sim2{:}30\) UT on 27 March 2012 (F1), the second part at around 4:20 UT on the same day (F2). A precursor or preflare brightening was observed below the filament main axis about 30 min before F1. The brightening was followed by a jet-like ejection below the filament, which triggered its eruption. Before the eruption of F2, the filament seemed to be trapped within the overlying arcade loops for almost 1.5 h before it successfully erupted. Interestingly, we observe simultaneously contraction (\(\sim12~\mbox{km}\,\mbox{s}^{-1}\)) and expansion (\(\sim20~\mbox{km}\,\mbox{s}^{-1}\)) of arcade loops in the active region before F2. Magnetograms obtained with the Helioseismic and Magnetic Imager (HMI) show converging motion of the opposite polarities, which result in flux cancellation near the PIL. We suggest that flux cancellation at the PIL resulted in a jet-like ejection below the filament main axis, which triggered F1, similar to the tether-cutting process. F2 was triggered by removal of the overlying arcade loops via reconnection. Both filament eruptions produced high-speed (\(\sim1000~\mbox{km}\,\mbox{s}^{-1}\)) coronal mass ejections.  相似文献   
73.
Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100–2500 km. These icy bodies include trans‐Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy‐rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact‐induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.  相似文献   
74.
Encounter of Voyager with Saturn’s environment revealed the presence of electromagnetic ion-cyclotron waves (EMIC) in Saturnian magnetosphere. Cassini provided the evidence of dynamic particle injections in inner magnetosphere of Saturn. Also inner magnetosphere of Saturn has highest rotational flow shear as compared to any other planet in our solar system. Hence during these injections, electrons and ions are transported to regions of stronger magnetic field, thus gaining energy. The dynamics of the inner magnetosphere of Saturn are governed by wave-particle interaction. In present paper we have investigated those EMIC waves pertaining in background plasma which propagates obliquely with respect to the magnetic field of Saturn. Applying kinetic approach, the expression for dispersion relation and growth rate has been derived. Magnetic field model has been used to incorporate magnetic field strength at different latitudes for radial distance of \(6.18~R_{{s}}\) (\(1~R_{{s}}= 60{,}268~\mbox{km}\)). Various parameters affecting the growth of EMIC waves in cold bi-Maxwellian background and after the hot injections has been studied. Parametric analysis inferred that after hot injections, growth rate of EMIC waves increases till \(10^{\circ}\) and decreases eventually with increase in latitude due to ion density distribution in near-equatorial region. Also, growth rate of EMIC waves increases with increasing value of temperature anisotropy and AC frequency, but the growth rate decreases as the angle of propagation with respect to \(B_{0}\) (Magnetic field at equator) increases. The injection events which assume the Loss-cone distribution of particles, affect the lower wave numbers of the spectra.  相似文献   
75.
76.
Release of Chromium from Soils with Persulfate Chemical Oxidation   总被引:1,自引:0,他引:1  
An important part of the evaluation of the effectiveness of persulfate in situ chemical oxidation (ISCO) for treating organic contaminants is to identify and understand its potential impact on metal co‐contaminants in the subsurface. Chromium is a redox‐sensitive and toxic metal the release of which poses considerable risk to human health. The objective of this study was to investigate the impact of persulfate chemical oxidation on the release of chromium from three soils varying in physical‐chemical properties. Soils were treated with unactivated and activated persulfate [activated with Fe(II), Fe(II)‐EDTA, and alkaline pH] at two different concentrations (i.e., 41 mM and 2.1 mM persulfate) for 48 h and 6 months and were analyzed for release of chromium. Results show that release of chromium with persulfate chemical oxidation depends on the soil type and the activation method. Sandy soil with low oxidant demand released more chromium compared to soils with high oxidant demand. More chromium was released with alkaline pH activation. Alkaline pH and high Eh conditions favor oxidation of Cr(III) to Cr(VI), which is the main mechanism of release of chromium with persulfate chemical oxidation. Unactivated and Fe(II)‐activated persulfate decreased pH and at low pH in absence of EDTA chromium release is not a concern. These results indicate that chromium release can be anticipated based on the given site and treatment conditions, and ISCO system can be designed to minimize potential chromium release when treating soils and groundwater contaminated with both organic and metal contaminants.  相似文献   
77.
The solution of static elastic deformation of a homogeneous, orthotropic elastic uniform half-space with rigid boundary due to a non-uniform slip along a vertical strike-slip fault of infinite length and finite width has been studied. The results obtained here are the generalisation of the results for an isotropic medium having rigid boundary in the sense that medium of the present work is orthotropic with rigid boundary which is more realistic than isotropic and the results for an isotropic case can be derived from our results. The variations of displacement with distance from the fault due to various slip profiles have been studied to examine the effect of anisotropy on the deformation. Numerically it has been found that for parabolic slip profile, the displacement in magnitude for isotropic elastic medium is greater than that for an orthotropic elastic half-space, but, in case of linear slip, the displacements in magnitude for an orthotropic medium is greater than that for the isotropic medium.  相似文献   
78.
This paper deals with the stationary solutions of the planar restricted three-body problem when the primaries are triaxial rigid bodies with one of the axes as the axis of symmetry and its equatorial plane coinciding with the plane of motion. It is seen that there are five libration points, two triangular and three collinear. It is further observed that the collinear points are unstable, while the triangular points are stable for the mass parameter 0 < crit(the critical mass parameter). It is further seen that the triangular points have long or short periodic elliptical orbits in the same range of .This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   
79.
In the problem of 2+2 bodies in the Robe’s setup, one of the primaries of mass m*1m^{*}_{1} is a rigid spherical shell filled with a homogeneous incompressible fluid of density ρ 1. The second primary is a mass point m 2 outside the shell. The third and the fourth bodies (of mass m 3 and m 4 respectively) are small solid spheres of density ρ 3 and ρ 4 respectively inside the shell, with the assumption that the mass and the radius of third and fourth body are infinitesimal. We assume m 2 is describing a circle around m*1m^{*}_{1}. The masses m 3 and m 4 mutually attract each other, do not influence the motion of m*1m^{*}_{1} and m 2 but are influenced by them. We also assume masses m 3 and m 4 are moving in the plane of motion of mass m 2. In the paper, the equations of motion, equilibrium solutions, linear stability of m 3 and m 4 are analyzed. There are four collinear equilibrium solutions for the given system. The collinear equilibrium solutions are unstable for all values of the mass parameters μ,μ 3,μ 4. There exist an infinite number of non collinear equilibrium solutions each for m 3 and m 4, lying on circles of radii λ,λ′ respectively (if the densities of m 3 and m 4 are different) and the centre at the second primary. These solutions are also unstable for all values of the parameters μ,μ 3,μ 4, φ, φ′. Such a model may be useful to study the motion of submarines due to the attraction of earth and moon.  相似文献   
80.
Transition metal-doped TiO2 nanoparticles are synthesized by sol–gel method. The as-prepared samples are characterized by various techniques to correlate structural and optical properties with chemical nature of dopants and their effect on photocatalytic degradation of diethyl phthalate esters. X-ray diffraction (XRD) reveals that all the samples are crystalline and exhibit anatase as a major phase. Chemical nature of dopants could not affect the formation of anatase and its volume fraction. The crystallite size of undoped and doped TiO2 nanoparticles varies between 10 and 12 nm as confirmed by XRD and transmission electron microscope. The lowest optical band gap observed is 2.47 eV in Mn-doped TiO2. Among all the samples, Ni-doped TiO2 sample shows better photocatalytic activity and degradation of diethyl phthalate due to its lower crystallite size and higher surface area than those of Mn- and Co-doped TiO2 samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号