首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   18篇
  国内免费   5篇
测绘学   14篇
大气科学   47篇
地球物理   185篇
地质学   208篇
海洋学   29篇
天文学   40篇
自然地理   30篇
  2019年   4篇
  2018年   10篇
  2017年   10篇
  2016年   19篇
  2015年   10篇
  2014年   22篇
  2013年   25篇
  2012年   22篇
  2011年   18篇
  2010年   26篇
  2009年   21篇
  2008年   19篇
  2007年   12篇
  2006年   15篇
  2005年   20篇
  2004年   14篇
  2003年   12篇
  2002年   10篇
  2001年   13篇
  2000年   10篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   7篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   10篇
  1989年   6篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   6篇
  1982年   10篇
  1981年   4篇
  1980年   4篇
  1979年   10篇
  1978年   4篇
  1977年   5篇
  1974年   10篇
  1967年   5篇
  1966年   4篇
  1965年   5篇
  1958年   4篇
  1957年   6篇
  1954年   5篇
排序方式: 共有553条查询结果,搜索用时 406 毫秒
11.
12.
Summary The error structure of radar measurements should be accurately known in order to provide reliable estimates for a number of quantitative meteorological applications, from rainfall rate estimation to cloud microphysics. The aim of this paper is to give a detailed characterization of Z H and Z DR measurements obtained by the weather radar of Fossalon di Grado (Gorizia, Italy). Vertical-looking observations are used to determine the system bias on differential reflectivity and to estimate the measurement error on both Z H and Z DR in the rain medium. It is estimated that no bias is affecting Z DR and the accuracy of Z H and Z DR is 0.8 and 0.1 dB, respectively. A similar evaluation is done in the rain medium at larger ranges with the antenna pointing at low elevation angles. The long time stability of the absolute reflectivity calibration is also established by radar-rain gage inter-comparison over almost 200 hours of precipitation data collected during nearly two years. Received June 21, 2001 Revised November 13, 2001  相似文献   
13.
A combined volcanological, geochemical, paleo-oceanological, geochronological and geophysical study was undertaken on the Kurile Basin, in order to constrain the origin and evolution of this basin. Very high rates of subsidence were determined for the northeastern floor and margin of the Kurile Basin. Dredged volcanic samples from the Geophysicist Seamount, which were formed under subaerial or shallow water conditions but are presently located at depths in excess of 2300 m, were dated at 0.84±0.06 and 1.07±0.04 Ma with the laser 40Ar/39Ar single crystal method, yielding a minimum average subsidence rate of 1.6 mm/year for the northeast basin floor in the Quaternary. Trace element and Sr–Nd–Pb isotope data from the volcanic rocks show evidence for contamination within lower continental crust and/or the subcontinental lithospheric mantle, indicating that the basement presently at 6-km depth is likely to represent thinned continental crust. Average subsidence rates of 0.5–2.0 mm/year were estimated for the northeastern slope of the Kurile Basin during the Pliocene and Quaternary through the determination of the age and paleo-environment (depth) of formation of sediments from a canyon wall. Taken together, the data from the northeastern part of the Kurile Basin indicate that subsidence began in or prior to the Early Pliocene and that subsidence rates have increased in the Quaternary. Similar rates of subsidence have been obtained from published studies on the Sakhalin Shelf and Slope and from volcanoes in the rear of the Kurile Arc. The recent stress field of the Kurile Basin is inferred from the analysis of seismic activity, focal mechanism solutions and from the structure of the sedimentary cover and of the Alaid back-arc volcano. Integration of these results suggests that compression is responsible for the rapid subsidence of the Kurile Basin and that subsidence may be an important step in the transition from basin formation to its destruction. The compression of the Kurile Basin results from squeezing of the Okhotsk Plate between four major plates: the Pacific, North American, Eurasian and Amur. We predict that continued compression could lead to subduction of the Kurile Basin floor beneath Hokkaido and the Kurile Arc in the future and thus to basin closure.  相似文献   
14.
The growing availability of digital topographic data and the increased reliability of precipitation forecasts invite modelling efforts to predict the timing and location of shallow landslides in hilly and mountainous areas in order to reduce risk to an ever‐expanding human population. Here, we exploit a rare data set to develop and test such a model. In a 1·7 km2 catchment a near‐annual aerial photographic coverage records just three single storm events over a 45 year period that produced multiple landslides. Such data enable us to test model performance by running the entire rainfall time series and determine whether just those three storms are correctly detected. To do this, we link a dynamic and spatially distributed shallow subsurface runoff model (similar to TOPMODEL) to an in?nite slope model to predict the spatial distribution of shallow landsliding. The spatial distribution of soil depth, a strong control on local landsliding, is predicted from a process‐based model. Because of its common availability, daily rainfall data were used to drive the model. Topographic data were derived from digitized 1 : 24 000 US Geological Survey contour maps. Analysis of the landslides shows that 97 occurred in 1955, 37 in 1982 and ?ve in 1998, although the heaviest rainfall was in 1982. Furthermore, intensity–duration analysis of available daily and hourly rainfall from the closest raingauges does not discriminate those three storms from others that did not generate failures. We explore the question of whether a mechanistic modelling approach is better able to identify landslide‐producing storms. Landslide and soil production parameters were ?xed from studies elsewhere. Four hydrologic parameters characterizing the saturated hydraulic conductivity of the soil and underlying bedrock and its decline with depth were ?rst calibrated on the 1955 landslide record. Success was characterized as the most number of actual landslides predicted with the least amount of total area predicted to be unstable. Because landslide area was consistently overpredicted, a threshold catchment area of predicted slope instability was used to de?ne whether a rainstorm was a signi?cant landslide producer. Many combinations of the four hydrological parameters performed equally well for the 1955 event, but only one combination successfully identi?ed the 1982 storm as the only landslide‐producing storm during the period 1980–86. Application of this parameter combination to the entire 45 year record successfully identi?ed the three events, but also predicted that two other landslide‐producing events should have occurred. This performance is signi?cantly better than the empirical intensity–duration threshold approach, but requires considerable calibration effort. Overprediction of instability, both for storms that produced landslides and for non‐producing storms, appears to arise from at least four causes: (1) coarse rainfall data time scale and inability to document short rainfall bursts and predict pressure wave response; (2) absence of local rainfall data; (3) legacy effect of previous landslides; and (4) inaccurate topographic and soil property data. Greater resolution of spatial and rainfall data, as well as topographic data, coupled with systematic documentation of landslides to create time series to test models, should lead to signi?cant improvements in shallow landslides forecasting. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
15.
Dredged samples from the Geophysicist seamount volcano in the northeastern part of the Kurile Basin include volcanic and volcanoclastic rocks ranging from basalt to andesite. The rocks have geochemical features typical of high-K island-arc calc-alkaline volcanism. They are enriched in LILE and depleted in Zr, Ti, Nb, Ta and Y. The chondrite-normalized REE patterns are characterized by enrichment of LREE similar to those of island-arc lava from the submarine volcanoes of rear-arc zone of the Kurile Island Arc. The volcanic rocks have a wide range of 87Sr/86Sr ratios (0.70287-0.70652), varying 143Nd/144Nd and Pb isotopic ratios. Their trace-element compositions and Sr-Nd-Pb isotope signatures may be explained by a small addition of crustal continental component to mantle-derived magmas that suggest the existence of thinned continental basement under the eastern part of the Kurile Basin.  相似文献   
16.
The state of knowledge of the Central European water mite fauna and the research history are briefly surveyed. Several areas for which we are provided with rich data sets are of high value for the monitoring of faunistic trends on the background of local and global environmental change. The need for a database combining historical and actual faunistic information is stressed. It should facilitate the access to all data from former times, give a survey on actual activities by regular updates, and help for a better organization of future research activities. On the base of an update of the Limnofauna Europaea (K.O. Viets 1978, Gerecke in www.watermite.org) a first attempt is made to (1) recognize changes in the Central European fauna during the past 100 years; (2) emphasize species which may be endangered or have disappeared during the past 100 years. At the present state of knowledge, the degree of threat to water mite species in this area is best calculated from their preference for particular habitat types which are rare and in danger to disappear in cultivated landscapes. Our knowledge concerning neozoic water mites in the study area is discussed.  相似文献   
17.
Differential GPS (DGPS) and Differential Interferometric Synthetic Aperture Radar (DInSAR) analyses were applied to the Kos-Yali-Nisyros Volcanic Field (SE Hellenic Volcanic Arc) to quantify the ground deformation of Nisyros Volcano. After intense seismic activity in 1996, a GPS network was installed in June 1997 and re-occupied annually up to 2002. A general uplift ranging from 14 to 140 mm was determined at all stations of the network. The corresponding horizontal displacements ranged from 13 to 53 mm. The displacement vectors indicate that the island is undergoing extension towards the East, West and South. A two-source “Mogi” model combined with assumed motion along the Mandraki Fault was constructed to fit the observed deformation. The best-fit model assumes sources at a depth of 5500 m NW of the centre of the island and at 6500 m offshore ESE of Yali Island. DInSAR analysis using four pairs of images taken between May 1995 and September 2000 suggests that deformation was occurring during 1995 before the start of the seismic crisis. An amplitude of at least 56 mm along the slant range appeared for the period 1996 through 1999. This deformation is consistent with the two-source model invoked in DGPS modelling. Surface evidence of ground deformation is expressed in the contemporaneous reactivation of the Mandraki Fault. In addition, a 600 m long N-S trending irregular rupture in the caldera floor was formed between 2001 and 2002. This rupture is interpreted as the release of surface stress in the consolidated epiclastic and hydrothermal sediments of the caldera floor.  相似文献   
18.
Following Early Cretaceous nappe stacking, the Eastern Alps were affected by late-orogenic extension during the Late Cretaceous. In the eastern segment of this range, a Late Cretaceous detachment separates a very low- to low-grade metamorphic cover (Graz Paleozoic Nappe Complex, GPNC) above a low- to high-grade metamorphic basement. Synchronously, the Kainach Gosau Basin (KGB) collapsed and subsided on top of the section.Metamorphism of organic material within this section has been investigated using vitrinite reflectance data and Raman spectra of extracted carbonaceous material. In the southern part of the GPNC, vitrinite reflectance indicates a decrease in organic maturity towards the stratigraphic youngest unit. The remaining part of the GPNC is characterized by an aureole of elevated vitrinite reflectance values and Raman R2 ratios that parallels the margins of the GPNC. Vitrinite reflectance in the KGB shows a steep coalification gradient and increases significantly towards the western basin margin. The observed stratigraphic trend in the southern GPNC is a result of deep Paleozoic to Early Cretaceous burial. This maturity pattern was overprinted along the margins by advective heat and convective fluids during Late Cretaceous to Paleogene exhumation of basement rocks.During shearing, the fault zone was heated up to ca. 500 °C. This overprint is explained by a two-dimensional thermal model with a ramp-flat fault geometry and a slip rate of 1 to 1.5 cm/year during 5 Ma fault movement. The collapse basin above the detachment subsided in a thermal regime which was characterized by relaxing isotherms.  相似文献   
19.
An approach to establish the recharge component of managed aquifer recharge (MAR) has recently been proposed that uses small-diameter shallow wells installed using relatively inexpensive drilling methods such as direct push. As part of further development of that approach, a generalized procedure is presented for a technical and economic assessment of the approach’s potential in comparison to other systems. Following this procedure, the use of small-diameter wells was evaluated both experimentally and numerically for a site located in southern Styria, Austria. MAR is currently done at the site using a horizontal pipe infiltration system, and system expansion has been proposed with a target rate of 12 l/s using small-diameter wells as one possible option. A short-duration single-well field recharge experiment (recharge rate 1.3–3.5 l/s) was performed (recharge by gravity only). Numerical modeling of the injection test was used to estimate hydraulic conductivity (K). Quasi-steady-state, single-well recharge simulations for different locations, as well as a long-term transient simulation, were performed using the K value calibrated from the field injection test. Results indicate that a recharge capacity of 4.1 l/s was achievable with a maximum head rise of 0.2 m at the injection well. Finally, simulations were performed for three different well fields (4, 6 and 8 wells, respectively) designed to infiltrate a target rate of 12 l/s. The experimental and numerical assessments, supported by a cost analysis of the small-diameter wells, indicate that the small-diameter wells are a viable, cost-effective recharge approach at this and other similar sites.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号