首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   7篇
测绘学   1篇
大气科学   7篇
地球物理   48篇
地质学   28篇
海洋学   36篇
天文学   47篇
综合类   1篇
自然地理   4篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   9篇
  2014年   11篇
  2013年   7篇
  2012年   4篇
  2011年   10篇
  2010年   7篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   11篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   4篇
排序方式: 共有172条查询结果,搜索用时 31 毫秒
151.
The relation between tsunamis and sea-bottom deformations associated with the Kurile Islands earthquake of 1969 and the Tokachi-Oki earthquake of 1968 is studied on the basis of a fairly complete set of seismological and tsunami data. The seismic results are included in the calculation of static crustal deformations. The calculated deformations are compared with the tsunami source area as obtained by the inverse refraction diagram, the first motion of tsunami waves, and the height of the sea-level disturbance at the source. It is found that such deformations as predicted by the seismic results can quantitatively explain the source parameters of tsunamis. These findings strongly favor the idea that tsunamis are generated by tectonic deformations rather than by large submarine landslides and slumps. This conclusion is supported by additional analyses for the 1964 Niigata, 1944 Tonankai, 1933 Sanriku earthquakes. For the 1946 Nankaido earthquake, the source deformation responsible for the tsunami generation is of much greater magnitude than that for seismic waves.  相似文献   
152.
We show that the surface of a planet growing by planetesimal impact is heated over the melting temperature of the surface materials due to the blanketing effect of an impact induced H2O atmosphere with the present H2O abundance of the Earth even when the accretion time is as long as 108 years. Hence, a magma ocean covering the entire surface was formed on the Earth and Moon and other terrestrial planets during their formations.  相似文献   
153.
By measuring the maximum water level of the traces attained by the Japan Sea Tsunami on 26 May 1983, we obtained the distribution along the west coast of the northeast Japan. The level reaches a maximum at the coast eastward of the epicenter and decreases with the relationship 8.6e –0.017x (m) with distancex (km) measured from the coast nearest to the epicenter. A small increase of levels was observed at coasts to the south of the tsunami source having distance larger than 200 km. With the aid of tide gauge records we revealed an excitation of edge wave which brought about the small increase of levels at the southern coast. In comparison with the decrease with distance obtained on the coasts of the main islands of Japan, some noticeable peaks were observed at several small islands. It is suggested that the reason why a short period component is predominant for the initial wave motion of tsunami is that the source region has depth of 3, 000 meters. The feature of wave period is discussed in comparison with that of the 1964 Niigata Tsunami.  相似文献   
154.
The role of the US Coast Guard in protecting the marine environment. A policy statement by the Chief of the Office of Research and Development of the US Coast Guard.1  相似文献   
155.
A pump-sampler was designed to study the distribution of marine plankton and its possible relationship with the temperature and salinity of the water. Sea water was pumped up through a 2 inch diameter hose and plankton contained in it was collected on a filter cup (2 inches in diameter, 139 meshes/inch) without being damaged. The filter cup, when clogged by plankton organisms, was washed by spraying with about 100 cu. cm of water. The differences between two continuous with an interval of more than 3–4 seconds could be detected.A preliminary operation along a 2.82 km course in Maizuru Bay was carried out simultaneously with temperature-salinity measurements at sampling intervals of 30 m. Temperature was measured by a thermistor resistance thermometer, and salinity was measured by a salinometer with a subsample of water which was collected from an additional opening of the pump-sampler. The temperature-salinity record showed that four zones of water were characterized.It was found that wide variation of plankton counts indicated dense concentrations of particular species or group of species, and on the mesoscale it was possible to examine the size of the aggregation.  相似文献   
156.
In this study, 3-D Lattice Solid Model (LSMearth or LSM) was extended by introducing particle-scale rotation. In the new model, for each 3-D particle, we introduce six degrees of freedom: Three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. By using quaternion algebra, relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely decided. After incorporating this mechanism and introducing bond breaking under torsion and bending into the LSM, several tests on 2-D and 3-D rock failure under uni-axial compression are carried out. Compared with the simulations without the single particle rotational mechanism, the new simulation results match more closely experimental results of rock fracture and hence, are encouraging. Since more parameters are introduced, an approach for choosing the new parameters is presented.  相似文献   
157.
158.
Simulation of the Micro-physics of Rocks Using LSMearth   总被引:4,自引:0,他引:4  
-- The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (M0ra and Place, 1994; Place and Mora, 1999). A new modular and flexible LSM approach has been developed that allows different micro-physics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.  相似文献   
159.
Unseating of bridge girders/decks during earthquakes is very harmful to the safety and serviceability of bridges. Evidence from recent severe earthquakes indicates that in addition to damage along longitudinal direction, lateral displacement and rotation of bridge girders caused by pounding to adjacent girders can also lead to unseating. To simulate this effect, 3D modelling of the dynamic performance of whole bridge structures, including pounding, is needed strongly. This paper presents a 3D model that is practically suitable to precisely analyse pounding between bridge girders. Experiments have been conducted to verify the proposed pounding model. The 3D non‐linear modelling of steel elevated bridges is also discussed. A general‐purpose dynamic analysis program for bridges, namely dynamic analysis of bridge systems (DABS) has been developed. Seismic analyses on a chosen three‐span steel bridge are conducted for several cases including pounding as a case study. The applicability of the proposed pounding model is illustrated by the computations. The effects of poundings on the response of bridge girders are discussed and the computation results are given. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
160.
The tectonic processes taking place along the southern part of the Japan trench are discussed on the basis of the focal mechanism of the 1938 Shioya-Oki event which consists of the five large earthquakes of Ms = 7.4, 7.7, 7.8, 7.7 and 7.1. Detailed analyses of seismic waves and tsunamis are made for each of these earthquakes, and the dislocation parameters are obtained. The total seismic moment amounts to 2.3 · 1028 dyn.cm. The five earthquakes are grouped into either a low-angle thrust type or a nearly vertical normal-fault type. These mechanisms are common with other great earthquakes of the northwestern Pacific belt, and can be explained in terms of the interaction between the oceanic and continental plates. The vertical displacement inferred from the seismic results is in approximate agreement with the precise level data over the period from 1939 and 1897. This agreement suggests that the rate of the strain accumulation at the preseismic time is very small in the epicentral area. Repeated levelings at the postseismic time reveal a large-scale recovery of the coseismic subsidence. The postseismic deformation is one-third to one-half of the coseismic displacement. The time constant of the recovery is estimated to be 5 years or less. This type of deformation may be a manifestation of viscoelasticity of a weak zone underlying the continent. The amount of dislocation, together with the longterm seismicity, suggests a seismic slip rate of about 0.4 cm/year, which is one order of magnitude smaller than that for the adjacent regions. This suggests that a large part of the plate motion is taking place aseismically in this region. The tectonic process now taking place in the southern Japan trench can be considered to represent a stage just prior to a complete detachment of the sinking portion of the oceanic plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号