首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   9篇
  国内免费   1篇
测绘学   1篇
大气科学   10篇
地球物理   47篇
地质学   67篇
海洋学   24篇
天文学   63篇
综合类   1篇
自然地理   30篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2015年   8篇
  2014年   5篇
  2013年   10篇
  2012年   4篇
  2011年   11篇
  2010年   9篇
  2009年   19篇
  2008年   12篇
  2007年   8篇
  2006年   12篇
  2005年   6篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1992年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1933年   1篇
  1931年   1篇
排序方式: 共有243条查询结果,搜索用时 15 毫秒
231.
232.
233.
The People's Republic of China is in the process of rapid demographic, economic and urban change including nationwide engineering and building construction at an unprecedented scale. The mega-city of Shanghai is at the centre of China's modernisation. Rapid urbanisation and building growth have increased the exposure of people and property to natural disasters. The seismic hazard of Shanghai and its vicinity is presented from a seismogenic free-zone methodology. A PGA value of 49 cm s−2 and a maximum intensity value of VII for the Chinese Seismic Intensity Scale (a scale similar to the Modified Mercalli) for a 99% probability of non-exceedance in 50 years are determined for Shanghai city. The potential building damage for three independent districts of the city centre named Putuo, Nanjing Road and Pudong are calculated using damage vulnerability matrices. It is found that old civil houses of brick and timber are the most vulnerable buildings with potentially a mean probability value of 7.4% of this building structure type exhibiting the highest damage grade at intensity VII.  相似文献   
234.
The combined use of Lu–Hf and Sm–Nd isotope systems potentially offers a unique perspective for investigating continental erosion, but little is known about whether, and to what extent, the Hf–Nd isotope composition of sediments is related to silicate weathering intensity. In this study, Hf and Nd elemental and isotope data are reported for marine muds, leached Fe-oxide fractions and zircon-rich turbidite sands collected off the Congo River mouth, and from other parts of the SE Atlantic Ocean. All studied samples from the Congo fan (muds, Fe-hydroxides, sands) exhibit indistinguishable Nd isotopic composition (εNd ~ ? 16), indicating that Fe-hydroxides leached from these sediments correspond to continental oxides precipitated within the Congo basin. In marked contrast, Hf isotope compositions for the same samples exhibit significant variations. Leached Fe-hydroxide fractions are characterized by εHf values (from ? 1.1 to + 1.3) far more radiogenic than associated sediments (from ? 7.1 to ? 12.0) and turbidite sands (from ? 27.2 to ? 31.6). εHf values for Congo fan sediments correlate very well with Al/K (i.e. a well-known index for the intensity of chemical weathering in Central Africa). Taken together, these results indicate that (1) silicate weathering on continents leads to erosion products having very distinctive Hf isotope signatures, and (2) a direct relationship exists between εHf of secondary clay minerals and chemical weathering intensity.These results combined with data from the literature have global implications for understanding the Hf–Nd isotope variability in marine precipitates and sediments. Leached Fe-hydroxides from Congo fan sediments plot remarkably well on an extension of the ‘seawater array’ (i.e. the correlation defined by deep-sea Fe–Mn precipitates), providing additional support to the suggestion that the ocean Hf budget is dominated by continental inputs. Fine-grained sediments define a diffuse trend, between that for igneous rocks and the ‘seawater array’, which we refer to as the ‘zircon-free sediment array’ (εHf = 0.91 εNd + 3.10). Finally, we show that the Hf–Nd arrays for seawater, unweathered igneous rocks, zircon-free and zircon-bearing sediments (εHf = 1.80 εNd + 2.35) can all be reconciled, using Monte Carlo simulations, with a simple weathering model of the continental crust.  相似文献   
235.
The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), 1 1 For more information on the USGS Toxics Substances Hydrology Program at the Naval Air Warfare Center visit the NAWC website at http://nj.usgs.gov/nawc/
Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock. Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65°E, and dips 25° to 70°NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity. The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and delineate the lithostratigraphy from multiple wells. Gamma-ray logs and rock cores were correlated to develop a 13-layer gamma-ray stratigraphy and 41-layer lithostratigraphy throughout the fractured sedimentary rock research site. Detailed hydrogeologic framework shows that black carbon-rich laminated mudstones are the most hydraulically conductive. Water-quality and aquifer-test data indicate that groundwater flow is greatest and TCE contamination is highest in the black, carbon- and clay-rich laminated mudstones. Large-scale groundwater flow at the NAWC research site can be modeled as highly anisotropic with the highest component of permeability occurring along bedding planes.  相似文献   
236.
We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe–Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10–15 kyr before the eruption. The mush top was quartz-bearing and as shallow as ~3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of ~840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of ~790 °C, reflecting rapid cooling from the ~840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3–5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic magmas with the mush and melt-dominant body. However, the mafic magmas do not appear to have triggered the eruption or controlled magmatic temperatures in the erupted rhyolite. Integration of textural and compositional data from all available crystal types, across all dominant and subordinate magmatic components, allow the history of the Oruanui magma body to be reconstructed over a wide range of temporal scales using multiple techniques. This history spans the tens of millennia required to grow the parental magma system (U–Th disequilibrium dating in zircon), through the centuries and decades required to assemble the eruptible magma body (textural and diffusion modelling in orthopyroxene), to the months, days, hours and minutes over which individual phases of the eruption occurred, identified through field observations tied to diffusion modelling in magnetite, olivine, quartz and feldspar. Tectonic processes, rather than any inherent characteristics of the magmatic system, were a principal factor acting to drive the rapid accumulation of magma and control its release episodically during the eruption. This work highlights the richness of information that can be gained by integrating multiple lines of petrologic evidence into a holistic timeline of field-verifiable processes.  相似文献   
237.
We present high resolution, mid-infrared (MIR) images towards three hot molecular cores signposted by methanol maser emission: G173.49+2.42 (S231, S233IR), G188.95+0.89 (S252, AFGL-5180) and G192.60−0.05 (S255IR). Each of the cores was targeted with Michelle on Gemini North using five filters from 7.9 to 18.5 μm. We find each contains both large regions of extended emission and multiple, luminous point sources which, from their extremely red colours ( F 18.5/ F 7.9≥ 3), appear to be embedded young stellar objects. The closest angular separations of the point sources in the three regions are 0.79, 1.00 and 3.33 arcsec corresponding to linear separations of 1700, 1800 and 6000 au, respectively. The methanol maser emission is found closest to the brightest MIR point source (within the assumed 1-arcsec pointing accuracy). Mass and luminosity estimates for the sources range from 3 to  22 M  and from 50 to 40 000  L  , respectively. Assuming the MIR sources are embedded objects and the observed gas mass provides the bulk of the reservoir from which the stars formed, it is difficult to generate the observed distributions for the most massive cluster members from the gas in the cores using a standard form of the initial mass function.  相似文献   
238.
A rigorous proof is given for the existence of quasi-periodic solutions with only two degrees of freedom to a planar three-body problem. The solution corresponds physically to the small bodies moving on different, nearly elliptical orbits about a large mass located at a focus. The perihelia of the two orbits are locked in such a way that the difference of the two perihelia has mean value zero.  相似文献   
239.
240.
We present radio observations of comet 9P/Tempel 1 associated with the Deep Impact spacecraft collision of 2005 July 4. Weak 18-cm OH emission was detected with the Parkes 64-m telescope, in data averaged over July 4–6, at a level of  12 ± 3 mJy km s−1  , corresponding to OH production rate  2.8 × 1028  molecules s−1 (Despois et al. inversion model, or  1.0 × 1028 s−1  for the Schleicher & A'Hearn model). We did not detect the HCN 1–0 line with the Mopra 22-m telescope over the period July 2–6. The 3σ limit of 0.06 K km s−1 for HCN on July 4 after the impact gives the limit to the HCN production rate of  <1.8 × 1025 s−1  . We did not detect the HCN 1–0 line, 6.7 GHz CH3OH line or 3.4-mm continuum with the Australia Telescope Compact Array (ATCA) on July 4, giving further limits on any small-scale structure due to an outburst. The 3σ limit on HCN emission of 2.5 K km s−1 from the ATCA around impact corresponds to limit < 4 × 1029 HCN molecules released by the impact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号