首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2526篇
  免费   146篇
  国内免费   32篇
测绘学   88篇
大气科学   291篇
地球物理   651篇
地质学   777篇
海洋学   214篇
天文学   352篇
综合类   8篇
自然地理   323篇
  2022年   13篇
  2021年   48篇
  2020年   59篇
  2019年   53篇
  2018年   68篇
  2017年   80篇
  2016年   106篇
  2015年   88篇
  2014年   97篇
  2013年   182篇
  2012年   117篇
  2011年   156篇
  2010年   119篇
  2009年   140篇
  2008年   140篇
  2007年   140篇
  2006年   132篇
  2005年   108篇
  2004年   91篇
  2003年   92篇
  2002年   81篇
  2001年   51篇
  2000年   56篇
  1999年   39篇
  1998年   34篇
  1997年   30篇
  1996年   29篇
  1995年   30篇
  1994年   18篇
  1993年   19篇
  1992年   12篇
  1991年   17篇
  1990年   15篇
  1989年   28篇
  1988年   11篇
  1987年   20篇
  1986年   11篇
  1985年   23篇
  1984年   14篇
  1983年   14篇
  1982年   12篇
  1981年   18篇
  1980年   10篇
  1979年   13篇
  1978年   9篇
  1977年   7篇
  1976年   6篇
  1975年   7篇
  1974年   8篇
  1972年   5篇
排序方式: 共有2704条查询结果,搜索用时 46 毫秒
131.
Moon snail predation on clams is a common model system of predator–prey interactions. In this system, the predator bores through the shell of its prey, leaving a distinct and identifiable hole. Some paleoecological and behavioral research on moon snails suggests a trend in predation preference directed toward clams with small shells. Rarely, however, have studies tested relative drilling frequencies across species and size ranges in natural assemblages of clam communities. We examined the clam community composition at two beaches in South Carolina, USA, and we then tested moon snail predator preferences for (a) clam prey species and (b) whether their selection is related to prey shell size. We collected a total of 1,879 clam shells, identified each shell to species and recorded their anteroposterior length. The species composition of clams differed significantly between the two beaches; Anadara ovalis was dominant at both sites, but three of ten total species were only collected at one beach. Folly Beach had nearly a 60% higher the overall drilling frequency (34.6%) versus Edisto Beach (21.8%), and this may be linked to the differences in clam community compositions at the sites. For A. ovalis and Mulinia lateralis, shells with larger lengths have lower probabilities of being bored by a moon snail. Anadara brasiliana, which generally is a thinner‐shelled clam species, had the highest total drilling frequency (77.2%), and Noetia ponderosa, a thicker‐shelled clam, had a considerably lower drilling frequency (12.0%). We conclude that both community level factors (species composition) and population characteristics (shell size distributions) may influence the local drilling frequency by moon snails.  相似文献   
132.
This study investigates the topographic deformation due to the erosion of a sand bed impinged by a moving submerged turbulent round jet in a large-scale laboratory. The test conditions represent the case of discharges beneath a vessel while operating in water with a limited clearance such as a shallow navigation channel. The jet moves horizontally and discharges water vertically downward towards the bed. The distance between the jet nozzle and the bed equals six times the jet diameter so the jet flow is in the potential core region. The speed of the jet horizontal motion was varied to examine its effect on the scour profile. The characteristic lengths of the scour profile in the asymptotic state were determined by modifying the empirical formulas in Aderibigbe and Rajaratnam [1996. Erosion of loose beds by submerged circular impinging vertical turbulent jets. Journal of Hydraulic Research 34(1), 19–33]. The maximum scour depth, the scour hole radius, and the ridge height were found to be a function of the ratio of the jet exit to jet translation velocities and were modeled using a hyperbolic function. Empirical equations describing the scour profile were developed and the scour profile was found to be self-similar when normalized by appropriate length scales.  相似文献   
133.
We investigated microphytobenthic photosynthesis at four stations in the coral reef sediments at Heron Reef, Australia. The microphytobenthos was dominated by diatoms, dinoflagellates and cyanobacteria, as indicated by biomarker pigment analysis. Conspicuous algae firmly attached to the sand grains (ca. 100 μm in diameter, surrounded by a hard transparent wall) were rich in peridinin, a marker pigment for dinoflagellates, but also showed a high diversity based on cyanobacterial 16S rDNA gene sequence analysis. Specimens of these algae that were buried below the photic zone exhibited an unexpected stimulation of respiration by light, resulting in an increase of local oxygen concentrations upon darkening. Net photosynthesis of the sediments varied between 1.9 and 8.5 mmol O2 m−2 h−1 and was strongly correlated with Chl a content, which lay between 31 and 84 mg m−2. An estimate based on our spatially limited dataset indicates that the microphytobenthic production for the entire reef is in the order of magnitude of the production estimated for corals. Photosynthesis stimulated calcification at all investigated sites (0.2–1.0 mmol Ca2+ m−2 h−1). The sediments of at least three stations were net calcifying. Sedimentary N2-fixation rates (measured by acetylene reduction assays at two sites) ranged between 0.9 to 3.9 mmol N2 m−2 h−1 and were highest in the light, indicating the importance of heterocystous cyanobacteria. In coral fingers no N2-fixation was measurable, which stresses the importance of the sediment compartment for reef nitrogen cycling.  相似文献   
134.
Based on measurements of the 18O isotope composition of 247 samples collected over a 3-year period we have assessed the oxygen isotope composition of water masses in the North Sea. This is the first δ18O data set that covers the entire North Sea basin. The waters lie on a mixing line: δ18O (‰VSMOW) = −9.300 + 0.274(S) with North Atlantic sub-polar mode water (SPMW) and surface waters, and Baltic Sea water representing the saline and freshwater end members respectively. Patterns exhibited in surface and bottom water δ18O distributions are representative of the general circulation of the North Sea. Oxygen-18 enriched waters from the North Atlantic enter the North Sea between Scotland and Norway and to a lesser extent through the English Channel. In contrast, oxygen-18 depleted waters mainly inflow from the Baltic Sea, the rivers Rhine and Elbe, and to a lesser degree, the Norwegian Fjords and other river sources. Locally the δ18O–salinity relationship will be controlled by the isotopic composition of the freshwater inputs. However, the range of local freshwater compositions around the North Sea basin is too narrow to characterise the relative contributions of individual sources to the overall seawater composition. This dataset provides important information for a number of related disciplines including biogeochemical research and oceanographic studies.  相似文献   
135.
Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean–atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on regenerating and recovering coral reefs have originated from broadcast spawning taxa with a potential for asexual growth, relatively long distance dispersal, successful settlement, rapid growth and a capacity for framework construction. Whether or not affected reefs can continue to function as before will depend on: (1) how much coral cover is lost, and which species are locally extirpated; (2) the ability of remnant and recovering coral communities to adapt or acclimatize to higher temperatures and other climatic factors such as reductions in aragonite saturation state; (3) the changing balance between reef accumulation and bioerosion; and (4) our ability to maintain ecosystem resilience by restoring healthy levels of herbivory, macroalgal cover, and coral recruitment. Bleaching disturbances are likely to become a chronic stress in many reef areas in the coming decades, and coral communities, if they cannot recover quickly enough, are likely to be reduced to their most hardy or adaptable constituents. Some degraded reefs may already be approaching this ecological asymptote, although to date there have not been any global extinctions of individual coral species as a result of bleaching events. Since human populations inhabiting tropical coastal areas derive great value from coral reefs, the degradation of these ecosystems as a result of coral bleaching and its associated impacts is of considerable societal, as well as biological concern. Coral reef conservation strategies now recognize climate change as a principal threat, and are engaged in efforts to allocate conservation activity according to geographic-, taxonomic-, and habitat-specific priorities to maximize coral reef survival. Efforts to forecast and monitor bleaching, involving both remote sensed observations and coupled ocean–atmosphere climate models, are also underway. In addition to these efforts, attempts to minimize and mitigate bleaching impacts on reefs are immediately required. If significant reductions in greenhouse gas emissions can be achieved within the next two to three decades, maximizing coral survivorship during this time may be critical to ensuring healthy reefs can recover in the long term.  相似文献   
136.
A set of eight principles is contained in the European Recommendation on Integrated Coastal Zone Management. The principles have been adopted with the minimum of critical review. The six core principles form two groups, one concerned with strategic goals and one that has a local focus. The principles are presented as a menu of free-standing options, with no prioritization either within or between groups. This can produce irreconcilable differences in strategy. The principles require clarification, prioritization of the strategic principles and recognition that they are an indivisible integrated set which should not be used to select principles to advance a particular agenda.  相似文献   
137.
Ecological-niche factor analysis (ENFA) was applied to the reef framework-forming cold-water coral Lophelia pertusa. The environmental tolerances of this species were assessed using readily available oceanographic data, including physical, chemical, and biological variables. L. pertusa was found at mean depths of 468 and 480 m on the regional and global scales and occupied a niche that included higher than average current speed and productivity, supporting the theory that their limited food supply is locally enhanced by currents. Most records occurred in areas with a salinity of 35, mean temperatures of 6.2–6.7  °C and dissolved oxygen levels of 6.0–6.2 ml l−1. The majority of records were found in areas that were saturated with aragonite but had low concentration of nutrients (silicate, phosphate, and nitrate). Suitable habitat for L. pertusa was predicted using ENFA on a global and a regional scale that incorporated the north-east Atlantic Ocean. Regional prediction was reliable due to numerous presence points throughout the area, whereas global prediction was less reliable due to the paucity of presence data outside of the north-east Atlantic. However, the species niche was supported at each spatial scale. Predicted maps at the global scale reinforced the general consensus that the North Atlantic Ocean is a key region in the worldwide distribution of L. pertusa. Predictive modelling is an approach that can be applied to cold-water coral species to locate areas of suitable habitat for further study. It may also prove a useful tool to assist spatial planning of offshore marine protected areas. However, issues with eco-geographical datasets, including their coarse resolution and limited geographical coverage, currently restrict the scope of this approach.  相似文献   
138.
139.
The quantity of coastline retreat resulting from storm erosion is one of the most important phenomena that needs to be accurately quantified to facilitate effective coastal management strategies. Historically, the volume of storm erosion (and coastline retreat) accommodated for coastal planning decisions has been directly linked to the storm (usually defined by considering wave height and duration only) with a certain pre-defined return period, known as a Synthetic Design Storm (SDS) (e.g. 1 in 100 year storm). The SDS method of estimating storm erosion volumes for coastal planning thus assumes that, for example, the 1 in 100 year storm event also results in a 1 in 100 year erosion event. This communication discusses the physical reality of this assumption and demonstrates the improved performance of a new method, based on Joint Probability Distributions (JPD) for estimating storm erosion volumes proposed by Callaghan et al. [Callaghan, D.P., Nielsen, P., Short, A.D. and Ranasinghe, R., 2008. Statistical simulation of wave climate and extreme beach erosion. Coastal Engineering, 55(5): 375–390] using one of the world's longest beach profile surveys from Sydney, Australia.  相似文献   
140.
The short-term (5 day) accumulation of Cu and Zn in different tissues of the marine gastropod, Littorina littorea, has been studied in the presence of 10 mg l−1 of antifouling paint particles and pre- or simultaneously contaminated algal food (Ulva lactuca). Accumulation of Cu was observed in the head–foot, digestive gland–gonad complex and gills to extents dependent on how and when food was contaminated and administered. However, retention of Zn was only observed in the gills and only when L. littorea and U. lactuca were simultaneously exposed to paint particles. Relative to the alga, faecal material was highly enriched in Zn, suggesting that the animal is able to rapidly eliminate this metal, most likely through the formation and egestion of insoluble phosphate granules. Thus, L. littorea is a useful biomonitor of marine contamination by antifouling applications in respect of Cu but not Zn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号