首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   8篇
  国内免费   4篇
测绘学   30篇
大气科学   66篇
地球物理   44篇
地质学   130篇
海洋学   7篇
天文学   56篇
综合类   6篇
自然地理   5篇
  2022年   8篇
  2021年   6篇
  2020年   9篇
  2019年   6篇
  2018年   35篇
  2017年   26篇
  2016年   30篇
  2015年   23篇
  2014年   31篇
  2013年   24篇
  2012年   29篇
  2011年   18篇
  2010年   13篇
  2009年   12篇
  2008年   19篇
  2007年   6篇
  2006年   7篇
  2005年   9篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
  1990年   2篇
  1987年   2篇
  1986年   1篇
  1980年   1篇
  1974年   2篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
181.
In the present communication of our series of papers dealing with the accretion flows in the pseudo-Kerr geometry, we discuss the effects of viscosity on the accretion flow around a rotating black hole. We find the solution topologies and give special attention to the solutions containing shocks. We draw the parameter space where standing shocks are possible and where the shocks could be oscillating and could produce quasi-periodic oscillations (QPOs) of X-rays observed from black hole candidates. In this model, the extreme locations of the shocks give the upper limits of the QPO frequencies  (νQPO)  which could be observed. We show that both the viscosity of the flow and the spin of the black hole a increase the QPO frequency while, as expected, the black hole mass reduces the QPO frequencies. Our major conclusion is that the highest observed frequency gives a strict lower limit of the spin. For instance, a black hole exhibiting  νQPO∼ 400  and  700 Hz  must have the spin parameters of   a > 0.25  and  >0.75  , respectively, provided viscosity of the flow is small. We discuss the implications of our results in the light of observations of QPOs from black hole candidates.  相似文献   
182.
The predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP climate forecast system (CFS) are depicted by applying a maximized signal-to-noise empirical orthogonal function analysis. The CFS captures the two most dominant modes of observed climate patterns. The first most dominant mode is characterized by the climate features of the onset years of El Niño-Southern Oscillation (ENSO), with strong precipitation signals over the tropical eastern Indian and western Pacific oceans, Southeast Asia, and tropical Asian monsoon regions including the Bay of Bengal and the South China Sea. The second most dominant mode is characterized by the climate features of the decay years of ENSO, with weakening signals over the western-central Pacific and strengthening signals over the Indian Ocean. The CFS is capable of predicting the most dominant modes several months in advance. It is also highly skillful in capturing the air–sea interaction processes associated with the precipitation features, as demonstrated in sea surface temperature and wind patterns.  相似文献   
183.
184.
185.
Urbanisation has burdened cities with many problems associated with growth and the physical environment. Some of the urban locations in India are becoming increasingly vulnerable to natural hazards related to precipitation and flooding. Thus it becomes increasingly important to study the characteristics of these events and their physical explanation. This work studies rainfall trends in Delhi and Mumbai, the two biggest Metropolitan cities of Republic of India, during the period from 1951 to 2004. Precipitation data was studied on basis of months, seasons and years, and the total period divided in the two different time periods of 1951–1980 and 1981–2004 for detailed analysis. Long-term trends in rainfall were determined by Man-Kendall rank statistics and linear regression. Further this study seeks for an explanation for precipitation trends during monsoon period by different global climate phenomena. Principal component analysis and Singular value decomposition were used to find relation between southwest monsoon precipitation and global climatic phenomena using climatic indices. Most of the rainfall at both the stations was found out to be taking place in Southwest monsoon season. The analysis revealed great degree of variability in precipitation at both stations. There is insignificant decrease in long term southwest monsoon rainfall over Delhi and slight significant decreasing trends for long term southwest monsoon rainfall in Mumbai. Decrease in average maximum rainfall in a day was also indicated by statistical analysis for both stations. Southwest monsoon precipitation in Delhi was found directly related to Scandinavian Pattern and East Atlantic/West Russia and inversely related to Pacific Decadal Oscillation, whereas precipitation in Mumbai was found inversely related to Indian ocean dipole, El Ni?o- Southern Oscillation and East Atlantic Pattern.  相似文献   
186.
Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotranspiration plays a key role in crop production and water balance of a region, one of the major parameters affected by climate change. The reference evapotranspiration or ET0 is a calculated parameter used in this research. In the present study, changes in the future rainfall, minimum and maximum temperature, and ET0 have been shown by downscaling the HadCM3 (Hadley Centre Coupled Model version 3) model data. The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India. The downscaled outputs of projected rainfall, ET0 and temperatures have been shown for the 21st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine (LS-SVM) model. The efficiency of the LS-SVM model was measured by different statistical methods. The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature. Results showed an increase in the future rainfall, temperatures and ET0. The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May. Highest increase is projected in the 2080s in 2081–2091 and 2091–2099 in maximum temperature and 2091–2099 in minimum temperature in all the stations. Winter maximum temperature has been observed to have increased in the future. High rainfall is also observed with higher ET0 in some decades. Two peaks of the increase are observed in ET0 in the April–May and in the October. Variation in these parameters due to climate change might have an impact on the future water resource of the study area, which is mainly an agricultural based region, and will help in proper planning and management.  相似文献   
187.
In previous studies, the groundwater flow models formulated for the Hat Yai Basin were conventional and deterministic because the geologic heterogeneity of the alluvial aquifer system in the basin had not yet been assessed. This paper describes an effort to develop hydrofacies models, such that the spatial variability of the aquifer system can be represented in a systematic way. Variogram parameters that characterize the alluvial aquifer heterogeneity were determined. Based on these variogram parameters, an indicator-based geostatistical approach was used to develop hydrofacies models using sequential indicator simulation. The hydrofacies models indicate three distinct aquifer units, namely Hat Yai, Khu Tao, and Kho Hong aquifers, which is in good agreement with a conceptual model, and incorporates spatial variability as observed in field data from borehole logs. The hydrofacies models can be used in groundwater modeling and simulations.  相似文献   
188.
Groundwater resources assessment of the Koyna River basin,India   总被引:2,自引:1,他引:1  
The Western Ghats (hills) region of the Indian peninsula in western India receives heavy precipitation (4,000–6,000 mm/year), but the headwater basins that coalesce runoff from these hills retain very small quantities of water due to the steep topography. However, the narrow valleys in these hills support agriculture based on surface water irrigation, and several medium to large irrigation projects have already been constructed with well-defined canal networks. These developments have boosted agricultural productivity in the region, but at the same time they are causing an economic disparity between the command areas (irrigated by these canals) and non-command areas. Water-logging problems are also occurring in low-lying areas. While these problems are mainly due to poor groundwater management strategies in the region, the groundwater resources in these headwater basins should be properly assessed and suitable measures taken for uniform groundwater development. As a first step in this direction, groundwater resources have been assessed as a case study for the lower Koyna River basin, a head water basin on the east of the main ridge of the Western Ghats.Regional specific yield (0.012) and groundwater recharge have been estimated on the basis of water table fluctuation method. Groundwater recharge amounting to 57 MCM (million m3) in a year takes place in the region through vertical percolation of rainwater (31 MCM), return flow of water applied for irrigation (23 MCM), and recharge due to surface water tanks (3 MCM). Recharge to deeper aquifers has been estimated at 1 MCM during dry seasons (November–May). Safe yield has been estimated at 58 MCM annually which includes the present groundwater draft by wells for domestic, stock, and irrigational needs estimated at 16.50 MCM per year and the natural losses from the groundwater system which are mostly baseflow and spring discharges amounting to 38 MCM (35 MCM baseflow + 3 MCM spring flow) per year, out of which 7 MCM is already being directly pumped from the tributaries of the Koyna River for irrigational needs. Thus, there remains a balance of only 3.5 MCM of groundwater for further groundwater development. Assuming that at least 25% (7 MCM) of the unutilized baseflow (28 MCM) can be brought to fruitful use, about 10.5 MCM (7+3.5 MCM) of groundwater can be used in the existing hydrogeological environment through about 500 additional wells.
Resumen La región de las montañas de Western Ghats, al Oeste de la Península India, registra elevados valores de precipitación (de 4.000 a 6.000 mm/a), pero las condiciones topográficas de dichas montañas no permiten la existencia de acuíferos de entidad suficiente para albergar volúmenes grandes de aguas subterráneas. Los valles estrechos de las montañas sí permiten el desarrollo de las aguas superficiales, de manea que se ha realizado varios proyectos medianos y grandes de riego mediante redes de canales bien definidas. Estos desarrollos han propiciado un aumento de la producción agrícola en la región, pero, a la vez, se ha agudizado las diferencias económicas entre las zonas regadas y las no regadas. Además, las depresiones topográficas están padeciendo problemas de inundación. Como estos problemas son principalmente debidos a estrategias deficientes de gestión de las aguas subterráneas, se recomienda que los recursos subterráneas de las cuencas de cabecera sean adecuadamente determinados, y que se adopte medidas apropiadas para desarrollarlos uniformemente. El primer paso ha consistido en determinar los recursos subterráneos de la cabecera del río Koynam, situada al Este de la Sierra principal de los Western Ghats. Se ha estimado todos los parámetros de recarga y descarga, así como los recursos renovables, en la cuenca del río Koyna ubicada aguas debajo de la presa de Koyna.

Résumé La région des Collines occidentales (Western Ghats) de la péninsule indienne en Inde occidentale reçoit de fortes précipitations (4.000–6.000 mm/an); mais les bassins situés en tête qui convergent dans ces collines retiennent très peu d'eaux souterraines du fait des mauvaises conditions de pente en surface. Les vallées étroites dans ces collines offrent de larges espaces pour la mise en valeur des eaux de surface, en sorte que plusieurs projets d'irrigation moyens ou importants ont déjà été réalisés dans ces régions avec un réseau bien défini de canaux. Cette mise en valeur a réellement poussé la productivité agricole de la région, mais en même temps elle produit aussi une disparité économique entre les régions desservies (zones irriguées par ces canaux) et non desservies. Des problèmes relatifs à l'eau se posent également dans les zones basses. Alors que ces problèmes sont surtout dus à de médiocres stratégies de gestion dans la région, il est recommandé que les ressources en eaux souterraines dans ces bassins en tête soient correctement évaluées et que des mesures adéquates soient prises en vue d'une mise en valeur uniforme des eaux souterraines. À titre de première étape dans cette direction, les ressources en eaux souterraines ont été évaluées lors d'une étude de cas du bassin de la rivière Koyna, un bassin de tête situé à l'est de la chaîne principale des Collines Occidentales. Tous les paramètres d'entrée et de sortie ont été estimés et un bilan a été réalisé entre ces deux composantes. Les ressources statiques et dynamiques en eaux souterraines ont été estimées et un rendement sûr a été déterminé pour le bassin de la rivière Koyna en aval du barrage de Koyna.

  相似文献   
189.
Abstract The Archean to Paleo–Proterozoic Bundelkhand massif basement of the central Indian shield has been dissected by numerous mafic dykes of Proterozoic age. These dykes are low‐Ti tholeiites, ranging in composition from subalkaline basalt through basaltic‐andesite to dacite. They are enriched in light rare earth elements (LREE), large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE: Nb, P and Ti). Negative Sr anomaly is conspicuous. Nb/La ratios of the dykes are much lower compared with the primitive mantle, not much different from the average crustal values, but quite similar to those of continental and subduction related basaltic rocks. Bulk contamination of the mantle derived magma by crustal material is inadequate to explain the observed geochemical characteristics; instead contamination of the mantle/lithospheric source(s) via subduction of sediment is a better proposition. Thus, in addition to generating juvenile crust along the former island arcs, subduction processes appear to have influence on the development of enriched mantle/lithospheric source(s). The Bundelkhand massif basement is inferred to represent subduction related juvenile crust, that experienced lithospheric extension and rifting possibly in response to mantle plume activities. The latter probably supplied the required heat, material (fluids) and extensional environment to trigger melting in the refractory lithospheric source(s) and emplacement of the mafic dykes. Proterozoic mafic magmatic rocks from Bundelkhand, Aravalli, Singhbhum and Bastar regions of the Indian shield and those from the Garhwal region of the Lesser Himalaya display remarkably similar enriched incompatible trace elements characteristics, although limited chemical variations are observed in all these rocks. This may indicate the existence of a large magmatic province, different parts of which might have experienced similar petrogenetic processes and were probably derived from mantle/lithospheric source(s) with similar trace element characteristics. The minor, less enriched to depleted components of the Jharol Group of the Aravalli terrane and those from the Singhbhum terrane may represent protracted phases of rifting, that probably caused thinning and mobilization of the lithosphere, facilitating the eruption/emplacement of the asthenospheric melts (with N‐ to T‐types mid‐oceanic ridge basalts signatures) and deposition of deep water facies sediments in the younger developing oceanic basins. In contrast, Bundelkhand region did not experience such protracted rifting, although dyke swarms were emplaced and shallow water Bijawar Group and Vindhyan Supergroup sediments were deposited in continental rift basins. All these discrete Proterozoic terranes appear to have experienced similar petrogenetic processes, tectonomagmatic and possibly temporal evolution involving subduction processes, influencing the lithospheric source characteristics, followed by probably mantle plume induced ensialic rifting through to the development of oceanic basins in the Indian shield regions and their extension in the Lesser Himalaya.  相似文献   
190.
Renewal of forests is important for continued wood supply and for other benefits. Consequently, restocking of forest cut-overs is a major forest management activity. Effective planning and successful implementation of reforestation programmes require efficient techniques for obtaining timely and accurate information regarding restocking status over clearcut forest lands. The purpose of this paper is to investigate the potential of Landsat Thematic Mapper (TM) data for reforestation monitoring. B-distance, a multivariation distance measure, has been used to measure spectral separability. Attempt has been made to discriminate five restocking classes (with percent canopy classes of 0,10 -12,15 -18, 43 - 47 and 100). Finally selection has been made for the optimum multiband subset from the six reflective TM bands. The results indicate that the combinations of TM bands 3-4-5, 4-5-7,1-4-5, and 2-4-5 were most useful for discriminating various restocking classes. Overall classification accuracies are estimated to be approximately 90 percent using these three-band subsets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号