首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   582篇
  免费   16篇
  国内免费   2篇
测绘学   21篇
大气科学   69篇
地球物理   154篇
地质学   177篇
海洋学   56篇
天文学   52篇
自然地理   71篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   10篇
  2016年   10篇
  2015年   14篇
  2014年   11篇
  2013年   35篇
  2012年   19篇
  2011年   26篇
  2010年   20篇
  2009年   30篇
  2008年   25篇
  2007年   22篇
  2006年   29篇
  2005年   17篇
  2004年   20篇
  2003年   18篇
  2002年   14篇
  2001年   9篇
  2000年   15篇
  1999年   9篇
  1998年   12篇
  1997年   6篇
  1996年   8篇
  1995年   6篇
  1994年   10篇
  1993年   10篇
  1992年   5篇
  1991年   7篇
  1990年   7篇
  1989年   8篇
  1988年   10篇
  1987年   10篇
  1986年   4篇
  1985年   5篇
  1984年   8篇
  1983年   12篇
  1982年   13篇
  1981年   18篇
  1980年   7篇
  1979年   8篇
  1978年   11篇
  1977年   5篇
  1976年   3篇
  1975年   6篇
  1972年   7篇
  1971年   3篇
  1969年   3篇
  1958年   2篇
排序方式: 共有600条查询结果,搜索用时 15 毫秒
61.
The Western Slope of the Songliao Basin is rich in heavy oil resources (>70 × 108 bbl), around which there are shallow gas reservoirs (∼1.0 × 1012 m3). The gas is dominated by methane with a dryness over 0.99, and the non-hydrocarbon component being overwelmingly nitrogen. Carbon isotope composition of methane and its homologs is depleted in 13C, with δ13C1 values being in the range of −55‰ to −75‰, δ13C2 being in the range of −40‰ to −53‰ and δ13C3 being in the range of −30‰ to −42‰, respectively. These values differ significantly from those solution gases source in the Daqing oilfield. This study concludes that heavy oils along the Western Slope were derived from mature source rocks in the Qijia-Gulong Depression, that were biodegraded. The low reservoir temperature (30–50 °C) and low salinity of formation water with neutral to alkaline pH (NaHCO3) appeared ideal for microbial activity and thus biodegradation. Natural gas along the Western Slope appears mainly to have originated from biodegradation and the formation of heavy oil. This origin is suggested by the heavy δ13C of CO2 (−18.78‰ to 0.95‰) which suggests that the methane was produced via fermentation as the terminal decomposition stage of the oil.  相似文献   
62.
The Komsomolskaya kimberlite is one of numerous (>1,000) kimberlite pipes that host eclogite xenoliths on the Siberian craton. Eclogite xenoliths from the adjacent Udachnaya kimberlite pipe have previously been geochemically well characterized; however, data from surrounding diamond-bearing kimberlite pipes from the center of the craton are relatively sparse. Here, we report major- and trace-element data, as well as oxygen isotope systematics, for mineral separates of diamondiferous eclogite xenoliths from the Komsomolskaya kimberlite, suggesting two distinct subgroups of a metamorphosed, subducted oceanic crustal protolith. Using almandine contents, this suite can be divided into two subgroups: group B1, with a high almandine component (>20 mol%) and group B2, with a low almandine component (<20 mol%). Reconstructed REE profiles for B1 eclogites overlap with typical oceanic basalts and lack distinct Eu anomalies. In addition, elevated oxygen isotope values, which are interpreted to reflect isotopic exchange with seawater at low temperatures (<350 °C), are consistent with an upper-oceanic crustal protolith. Reconstructed REE profiles for B2 eclogites are consistent with oceanic gabbros and display distinct Eu anomalies, suggesting a plagioclase-rich cumulate protolith. In contrast to B1, B2 eclogites do not display elevated oxygen isotope values, suggesting an origin deep within the crustal pile, where little-to-no interaction with hydrothermal fluids has occurred. Major-element systematics were reconstructed based on mineral modes; group B1 eclogites have higher MgO wt% and lower SiO2 wt%, with respect to typical oceanic basalts, reflecting a partial melting event during slab subduction. Calculated residues from batch partial melt modeling of a range of Precambrian basalts overlap with group B1 trace-element chemistry. When taken together with the respective partial melt trajectories, these melting events are clearly linked to the formation of Tonalite–Trondhjemite–Granodiorite (TTG) complexes. As a result, we propose that many, if not all, diamondiferous eclogite xenoliths from Komsomolskaya represent mantle ‘restites’ that preserve chemical signatures of Precambrian oceanic crust.  相似文献   
63.
One proposed approach to ameliorate the effects of global warming is sequestration of the greenhouse gas CO2 in the deep sea. To evaluate the environmental impact of this approach, we exposed the sediment-dwelling fauna at the mouth of the Monterey Submarine Canyon (3262 m) and a site on the nearby continental rise (3607 m) to CO2-rich water. We measured meiobenthic nematode population and community metrics after ~30-day exposures along a distance gradient from the CO2 source and with sediment depth to infer the patterns of mortality. We also compared the nematode response with that of harpacticoid copepods. Nematode abundance, average sediment depth, tail-group composition, and length: width ratio did not vary with distance from the CO2 source. However, quantile regression showed that nematode length and diameter increased in close proximity to the CO2 source in both experiments. Further, the effects of CO2 exposure and sediment depth (nematodes became more slender at one site, but larger at the other, with increasing depth in the sediment) varied with body size. For example, the response of the longest nematodes differed from those of average length. We propose that nematode body length and diameter increases were induced by lethal exposure to CO2-rich water and that nematodes experienced a high rate of mortality in both experiments. In contrast, copepods experienced high mortality rates in only one experiment suggesting that CO2 sequestration effects are taxon specific.  相似文献   
64.
As part of the evaluation of the environmental impact of sequestering carbon dioxide in the deep ocean, we exposed the sediment-dwelling fauna at a station in Monterey Submarine Canyon (36.378°N, 122.676°W, 3262 m) to carbon dioxide-rich seawater and found that most of the harpacticoid copepods were killed. In an expanded, follow-on experiment on the continental rise nearby (36.709°N, 123.523°W, 3607 m), not only did harpacticoids survive exposure to carbon dioxide-rich seawater, but we found no evidence from seven additional metrics that the harpacticoids had been affected. We infer that during the second experiment the harpacticoids were not exposed to a stressful dose. During the second experiment, carbon dioxide-rich seawater appears to have been produced more slowly than in the first, probably because of differences in the near-bottom flow regimes. We conclude that local physical circumstances can substantially influence the results of experiments of this type and will complicate the evaluation of the environmental consequences of deep-ocean carbon dioxide sequestration.  相似文献   
65.
Since studies on deep-sea cores were carried out in the early 1990s it has been known that ambient temperature may have a marked affect on apatite fission track annealing. Due to sluggish annealing kinetics, this effect cannot be quantified by laboratory annealing experiments. The unknown amount of low-temperature annealing remains one of the main uncertainties for extracting thermal histories from fission track data, particularly for samples which experienced slow cooling in shallow crustal levels. To further elucidate these uncertainties, we studied volcanogenic sediments from five deep-sea drill cores, that were exposed to maximum temperatures between ∼10° and 70 °C over geological time scales of ∼15-120 Ma. Mean track lengths (MTL) and etch pit diameters (Dpar) of all samples were measured, and the chemical composition of each grain analysed for age and track length measurements was determined by electron microprobe analysis. Thermal histories of the sampled sites were independently reconstructed, based on vitrinite reflectance measurements and/or 1D numerical modelling. These reconstructions were used to test the most widely used annealing models for their ability to predict low-temperature annealing. Our results show that long-term exposure to temperatures below the temperature range of the nominal apatite fission track partial annealing zone results in track shortening ranging between 4 and 11%. Both chlorine content and Dpar values explain the downhole annealing patterns equally well. Low chlorine apatite from one drill core revealed a systematic relation between Si-content and Dpar value. The question whether Si-substitution in apatite has direct and systematic effects on annealing properties however, cannot be addressed by our data. For samples, which remained at temperatures <30 °C, and which are low in chlorine, the Laslett et al. [Laslett G., Green P., Duddy I. and Gleadow A. (1987) Thermal annealing of fission tracks in apatite. Chem. Geol. 65, 1-13] annealing model predicts MTL up to 0.6 μm longer than those actually measured, whereas for apatites with intermediate to high chlorine content, which experienced temperatures >30 °C, the predictions of the Laslett et al. (1987) model agree with the measured MTL data within error levels. With few exceptions, predictions by the Ketcham et al. [Ketcham R., Donelick R. and Carlson W. (1999) Variability of apatite fission-track annealing kinetics. III: Extrapolation to geological time scales. Am. Mineral. 84/9, 1235-1255] annealing model are consistent with the measured data for samples which remained at temperatures below ∼30 °C. For samples which experienced maximum temperatures between ∼30 and 70 °C, and which are rich in chlorine, the Ketcham et al. (1999) model overestimates track annealing.  相似文献   
66.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   
67.
Reliable land cover land use (LCLU) information, and change over time, is important for Green House Gas (GHG) reporting for climate change documentation. Four different organizations have independently created LCLU maps from 2010 satellite imagery for Malawi for GHG reporting. This analysis compares the procedures and results for those four activities. Four different classification methods were employed; traditional visual interpretation, segmentation and visual labelling, digital clustering with visual identification and supervised signature extraction with application of a decision rule followed by analyst editing. One effort did not report classification accuracy and the other three had very similar and excellent overall thematic accuracies ranging from 85 to 89%. However, despite these high thematic accuracies there were very significant differences in results. National percentages for forest ranged from 18.2 to 28.7% and cropland from 40.5 to 53.7%. These significant differences are concerns for both remote-sensing scientists and decision-makers in Malawi.  相似文献   
68.
69.
Meteorite fusion crust formation is a brief event in a high‐temperature (2000–12,000 K) and high‐pressure (2–5 MPa) regime. We studied fusion crusts and bulk samples of 10 ordinary chondrite falls and 10 ordinary chondrite finds. The fusion crusts show a typical layering and most contain vesicles. All fusion crusts are enriched in heavy Fe isotopes, with δ56Fe values up to +0.35‰ relative to the solar system mean. On average, the δ56Fe of fusion crusts from finds is +0.23‰, which is 0.08‰ higher than the average from falls (+0.15‰). Higher δ56Fe in fusion crusts of finds correlate with bulk chondrite enrichments in mobile elements such as Ba and Sr. The δ56Fe signature of meteorite fusion crusts was produced by two processes (1) evaporation during atmospheric entry and (2) terrestrial weathering. Fusion crusts have either the same or higher δ18O (0.9–1.5‰) than their host chondrites, and the same is true for Δ17O. The differences in bulk chondrite and fusion crust oxygen isotope composition are explained by exchange of oxygen between the molten surface of the meteorites with the atmosphere and weathering. Meteorite fusion crust formation is qualitatively similar to conditions of chondrule formation. Therefore, fusion crusts may, at least to some extent, serve as a natural analogue to chondrule formation processes. Meteorite fusion crust and chondrules exhibit a similar extent of Fe isotope fractionation, supporting the idea that the Fe isotope signature of chondrules was established in a high‐pressure environment that prevented large isotope fractionations. The exchange of O between a chondrule melt and an 16O‐poor nebula as the cause for the observed nonmass dependent O isotope compositions in chondrules is supported by the same process, although to a much lower extent, in meteorite fusion crusts.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号