首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   17篇
  国内免费   5篇
测绘学   17篇
大气科学   18篇
地球物理   81篇
地质学   212篇
海洋学   20篇
天文学   40篇
自然地理   37篇
  2022年   2篇
  2021年   7篇
  2020年   3篇
  2019年   13篇
  2018年   7篇
  2017年   15篇
  2016年   18篇
  2015年   17篇
  2014年   13篇
  2013年   15篇
  2012年   17篇
  2011年   31篇
  2010年   20篇
  2009年   17篇
  2008年   24篇
  2007年   22篇
  2006年   23篇
  2005年   15篇
  2004年   19篇
  2003年   13篇
  2002年   18篇
  2001年   10篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   13篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   4篇
  1970年   1篇
  1967年   1篇
  1964年   2篇
  1960年   1篇
  1952年   1篇
  1949年   1篇
排序方式: 共有425条查询结果,搜索用时 203 毫秒
71.
Given the severe impacts of extreme heat on natural and human systems, we attempt to quantify the likelihood that rising greenhouse gas concentrations will result in a new, permanent heat regime in which the coolest warm-season of the 21(st) century is hotter than the hottest warm-season of the late 20(th) century. Our analyses of global climate model experiments and observational data reveal that many areas of the globe are likely to permanently move into such a climate space over the next four decades, should greenhouse gas concentrations continue to increase. In contrast to the common perception that high-latitude areas face the most accelerated response to global warming, our results demonstrate that in fact tropical areas exhibit the most immediate and robust emergence of unprecedented heat, with many tropical areas exhibiting a 50% likelihood of permanently moving into a novel seasonal heat regime in the next two decades. We also find that global climate models are able to capture the observed intensification of seasonal hot conditions, increasing confidence in the projection of imminent, permanent emergence of unprecedented heat.  相似文献   
72.
Control of erosion, and all of its after effects, from increased surface drainage and erosion to the formation of karst, is one of the essential problems when undertaking recultivation following necessary interventions in the sub-alpine and alpine vegetation stage (high zones). Average slope inclinations of 30–45% in the vicinity of ski runs, and far above in areas of natural erosion and avalanche zones, make restoration processes with sufficient erosion protection the prerequisite for success. Only a sufficient vegetation development of more than 70% ground cover stabilises the topsoil in the long term and reduces soil erosion to an acceptable degree. From 1999 to 2002, an international EU project with the participation of research groups and private firms from Austria, Italy and Germany was carried out under the direction of the Agricultural Research and Education Centre Raumberg-Gumpenstein (AREC) on five different Alpine sites at altitudes from 1,245 to 2,350 m above sea level. The aim of the work was the formulation of practice-relevant requirements for recultivation following intervention in high zones, especially following constructional measures in the vicinity of ski runs and lifts, torrent- and avalanche barriers. In a statistical comparison, the relationship between restoration techniques, seed mixtures of differing ecological value and vegetation cover was observed. The influence of application technique on erosion processes after restoration was obvious for the first two vegetation periods. Only with the additional use of mulch covers could increase surface drainage and noticeable soil loss be avoided. At high altitudes, the choice of seed mixture, irrespective of whether rapid or slow growing and independent of the extent of accompanying fertilisation, had no significance in the first two vegetation periods following sowing. In the following growing seasons, however, higher cover values were obtained with site-specific seed mixtures at three of the five experimental sites. While few species of the commercial seed mixture showed satisfactory persistency, most of the grasses and in particular the alpine leguminosae of site-specific seed mixtures increased their share during the observation period. In the long-term, sufficient protection against erosion is only guaranteed by the use of stable, enduring and ecologically adapted species.  相似文献   
73.
The in-situ “chemical” Th–U–Pb dating of monazite with the electron microprobe is used to unravel the Neoproterozoic tectono-thermal history of the “Erinpura Granite” terrane in the foreland of the Delhi Fold Belt (DFB) in the NW Indian craton. These granitoids are variably deformed and show effects of shearing activity. Monazites from the Erinpura granitoids recorded two main events; (1) protolith crystallization at 863 ± 23 Ma and (2) recrystallization and formation of new Th-poor monazite at 775 ± 26 Ma during shear overprint. Some components of the Erinpura granitoids, such as the Siyawa Granite and granites exposed near Sirohi town, show evidence of migmatization. This migmatization event is documented by anatexis and associated monazite crystallization at 779 ± 16 Ma. The age data indicate an overlap in timing between anatectic event and ductile shear deformation. The end of the tectono-thermal event in the Sirohi area is constrained by a 736 ± 6 Ma Ar–Ar muscovite age data from the ductile shear zone.  相似文献   
74.
The pre-Mesozoic, mainly Variscan metamorphic basement of the Col de Bérard area (Aiguilles Rouges Massif, External domain) consists of paragneisses and micaschists together with various orthogneisses and metabasites. Monazite in metapelites was analysed by the electron microprobe (EMPA-CHIME) age dating method. The monazites in garnet micaschists are dominantly of Variscan age (330–300 Ma). Garnet in these rocks displays well developed growth zonations in Fe–Mg–Ca–Mn and crystallized at maximal temperatures of 670°C/7 kbar to the west and 600°C/7–8 kbar to the east. In consequence the monazite is interpreted to date a slightly pressure-dominated Variscan amphibolite-facies evolution. In mylonitic garnet gneisses, large metamorphic monazite grains of Ordovician–Silurian (~440 Ma) age but also small monazite grains of Variscan (~300 Ma) age were discovered. Garnets in the mylonitic garnet gneisses display high-temperature homogenized Mg-rich profiles in their cores and crystallized near to ~800°C/6 kbar. The Ordovician–Silurian-age monazites can be assigned to a pre-Variscan high-temperature event recorded by the homogenised garnets. These monazite age data confirm Ordovician–Silurian and Devonian–Carboniferous metamorphic cycles which were already reported from other Alpine domains and further regions in the internal Variscides.  相似文献   
75.
The Zagros fold and thrust belt is a seismically active orogen that has accommodated the N–S shortening between the Arabian and Eurasian plates since the Miocene. Whereas the southeast parts of the belt have been studied in detail, the northwest extent has received considerably less attention, being part of the Republic of Iraq. In this study, we investigate fold growth in the area NE of Erbil (Kurdistan, Iraq). In particular, we focus on the interaction of the transient development of drainage patterns along growing antiforms, as this directly reflects the kinematics of progressive fold growth. Detailed geomorphological studies of the Bana Bawi‐, Permam‐ and Safeen‐fold trains show that these anticlines did not develop from a single embryonic fold but by lateral linkage of several different fold segments. These segments, with length between 5 and 25 km, have been detected by mapping ancient and modern river courses; these initially cut the nose of growing folds until eventually defeated, leaving curved wind gaps behind. Depending on the alignment of the initial embryonic folds, the segments can either record a linear‐ or an en‐echelon linkage. Comparison of natural examples from the Zagros fold and thrust belt in Iraq with published numerically modelled fold growth suggests that both linear‐linkage and en‐echelon linkage are mechanically feasible and are common processes during progressive shortening and fold growth.  相似文献   
76.
The palynological contents as well as macroscopic charcoal fragments from a calcareous sandstone pebble from Quaternary glacial deposits of the North Sea (80 km SW of the Dogger Bank) are described. The taxonomic composition of the palynoflora points to a Late Jurassic (or Late Jurassic/Early Cretaceous) age of the sandstone. The charcoal is interpreted as direct evidence of palaeo‐wildfire occurring during this period in the source area of the sediments of this particular sandstone. This finding, together with already published data on Mesozoic deposits, allows to conclude that wildfires were obviously widespread during this period in the area of the modern day North Sea and adjacent areas. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
77.
The zooplankton of oligotrophic lakes in North Patagonia is often dominated by mixotrophic ciliates, particularly Stentor amethystinus and Stentor araucanus. Therefore, we tested whether Stentor spp. (i) is an important food for juvenile endemic (Cheirodon australe, Galaxias maculatus, Odontesthes mauleanum, Percichthys trucha) and introduced (Oncorhynchus mykiss) fish species, and (ii) represents a remarkable grazer of bacteria. Ingestion rates of fish estimated by disappearance of Stentor in feeding experiments ranged between 8 (G. maculatus) and 53 (C. australe) ciliates per fish and day, and assimilation rates measured by using radioactively labelled Stentor ranged between 3 (P. trucha) and 52 (C. australe) ciliates per fish and day. However, although we detected the consumption of Stentor by fish, the daily consumption amounted to at most 0.2% of the fish biomass which can not cover the energy requirement of the fish. Furthermore, the daily consumption was equivalent to a maximum of 1.6% of the Stentor standing stock so that fish predation does not seem to be an important mortality factor for the ciliates. The clearance rate of Stentor sp. on natural bacteria was on average 3.8 μl cil−1 h−1. The daily ingestion (mean 3.9 ng C cil−1 d−1) was about 3.5% of the individual biomass of Stentor sp. Therefore, bacteria ingestion might explain a ciliate growth rate of appr. 1% d−1, which was about 17% of the photosynthesis of endosymbiotic algae. The maximum density of Stentor sp. in the lake could ingest about 1 μg C L−1 d−1 bacteria which is only 3% of average bacterial production. Thus, grazing by Stentor sp. does not seem to be a main loss factor for the bacteria.  相似文献   
78.
79.
Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean–atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on regenerating and recovering coral reefs have originated from broadcast spawning taxa with a potential for asexual growth, relatively long distance dispersal, successful settlement, rapid growth and a capacity for framework construction. Whether or not affected reefs can continue to function as before will depend on: (1) how much coral cover is lost, and which species are locally extirpated; (2) the ability of remnant and recovering coral communities to adapt or acclimatize to higher temperatures and other climatic factors such as reductions in aragonite saturation state; (3) the changing balance between reef accumulation and bioerosion; and (4) our ability to maintain ecosystem resilience by restoring healthy levels of herbivory, macroalgal cover, and coral recruitment. Bleaching disturbances are likely to become a chronic stress in many reef areas in the coming decades, and coral communities, if they cannot recover quickly enough, are likely to be reduced to their most hardy or adaptable constituents. Some degraded reefs may already be approaching this ecological asymptote, although to date there have not been any global extinctions of individual coral species as a result of bleaching events. Since human populations inhabiting tropical coastal areas derive great value from coral reefs, the degradation of these ecosystems as a result of coral bleaching and its associated impacts is of considerable societal, as well as biological concern. Coral reef conservation strategies now recognize climate change as a principal threat, and are engaged in efforts to allocate conservation activity according to geographic-, taxonomic-, and habitat-specific priorities to maximize coral reef survival. Efforts to forecast and monitor bleaching, involving both remote sensed observations and coupled ocean–atmosphere climate models, are also underway. In addition to these efforts, attempts to minimize and mitigate bleaching impacts on reefs are immediately required. If significant reductions in greenhouse gas emissions can be achieved within the next two to three decades, maximizing coral survivorship during this time may be critical to ensuring healthy reefs can recover in the long term.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号