首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
大气科学   33篇
地质学   2篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
11.
Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.  相似文献   
12.
Using a multivariate model testing procedure that distinguishes between model inadequacies and data uncertainties, we investigate the ability of the LODYC GCM to simulate the evolution of the 20°C isotherm depth during the 1982–1984 FOCAL/SEQUAL experiment in the equatorial Atlantic. Two different versions of the model are considered: the Ri version which has a Richardson number dependent parameterization of vertical mixing and the new TKE version which uses a local estimation of the turbulent kinetic energy to parameterize vertical mixing. Some effects of the forcing uncertainties are considered by forcing the TKE version with three equally plausible wind stress fields whose differences are consistent with the measurement and sampling errors, and the drag coefficient indeterminacy. The resulting uncertainties in the model response are substantial and can be as large as the differences between simulations with the two GCM versions, which stresses the need to take the forcing uncertainties into account. Although only one Ri run is available, it is shown that the TKE parameterization significantly improves the representation of the equatorial upwelling and the simulation of the depth of the thermocline in the eastern Atlantic. However, there remain significant differences with the observations which cannot be explained by the forcing uncertainties that were considered. The two model versions perform better in the equatorial wave guide than in the 12°N-12°S domain, and they are better distinguished over large domains than along sections, which shows that a global multivariate view point must be used in model-reality comparisons. Finally, a comparison with a linear multimode model emphasizes the need for greater model complexity to properly simulate the equatorial upwelling and the thermocline variability in the tropical Atlantic.This paper was presented at the Second International Conference on Modelling of Global Climate Variability, held in Hamburg 7–11 September 1992 under the auspices of the Max-Planck-Institute for Meteorology. Guest Editor for these papers is L. Dümenil  相似文献   
13.
This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean–atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean–atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Niño-Southern oscillation) consequently increases, as the damping processes are left unchanged.  相似文献   
14.
This study investigates the role of insolation in controlling the Indian and African monsoon evolutions during the Holocene using coupled ocean-atmosphere simulations of 0, 6, 9.5 kyr BP climates, for which only the variations of Earth’s orbital configuration are considered. The two monsoon systems are enhanced at 6 and 9.5 kyr BP, compared to 0 kyr BP, as a result of the intensified seasonal cycle of insolation in the Northern Hemisphere. The analysis of daily climatologies indicates that even though the length of the “celestial” summer season is shorter at 9.5 kyr BP, the rainy season is longer than at present. Emphasis is put on the impact of the precession on the seasonality, which partly explains why the relative amplification of the Indian and African monsoon varies between 9.5 and 6 kyr BP. Moreover, the changes in snow cover over the Tibetan Plateau play a critical role in reinforcing the 9.5 kyr BP monsoon in India during spring. The results suggest that the teleconnection between convection over India and subsidence over the Mediterranean regions, through the Rodwell and Hoskins mechanism, has an impact on the development of the African monsoon at 9.5 kyr BP.  相似文献   
15.
We use a state-of-the-art 3-dimensional coupled model to investigate the relative impact of long term variations in the Holocene insolation forcing and of a freshwater release in the North Atlantic. We show that insolation has a greater effect on seasonality and La Ni?a events and is the major driver of sea surface temperature changes. In contrast, the variations in precipitation reflect changes in El Ni?o events. The impact of ice-sheet melting may have offset the impact of insolation on El Ni?o Southern Oscillation variability at the beginning of the Holocene. These simulations provide a coherent framework to refine the interpretation of proxy data and show that changes in seasonality may bias the projection of relationships established between proxy indicators and climate variations in the east Pacific from present day records.  相似文献   
16.
Climate and vegetation: Simulating the African humid period   总被引:1,自引:0,他引:1  
The outputs of the climate simulated by two General Circulation Models (GCMs), (IPSL and UGAMP) have been used to force a vegetation model (LPJ-GUESS) to analyze the Holocene African humid period (AHP) and related vegetation changes over the 18°W-35°E, 5°S-25°N region. At the continental scale, simulations with the two models confirm the intensified African monsoon during the Holocene as compared to now, and the early but gradual termination of the AHP in eastern regions as compared to western regions. At the regional scale, the two GCMs results present important differences in the timing of the AHP, its spatial extent and the summer rainfall amplitude. Consequently, the vegetation model simulates changes that are globally in agreement with pollen data, but with large differences according to the region and the model considered. During the AHP, the IPSL climate induced proper vegetation changes in the eastern Sahara and in the Sahel, whereas the UGAMP climate induced correct changes in the western Sahara and in the equatorial zone.  相似文献   
17.
We have used the BIOME4 biogeography–biochemistry model and comparison with palaeovegetation data to evaluate the response of six ocean–atmosphere general circulation models to mid-Holocene changes in orbital forcing in the mid- to high-latitudes of the northern hemisphere. All the models produce: (a) a northward shift of the northern limit of boreal forest, in response to simulated summer warming in high-latitudes. The northward shift is markedly asymmetric, with larger shifts in Eurasia than in North America; (b) an expansion of xerophytic vegetation in mid-continental North America and Eurasia, in response to increased temperatures during the growing season; (c) a northward expansion of temperate forests in eastern North America, in response to simulated winter warming. The northward shift of the northern limit of boreal forest and the northward expansion of temperate forests in North America are supported by palaeovegetation data. The expansion of xerophytic vegetation in mid-continental North America is consistent with palaeodata, although the extent may be over-estimated. The simulated expansion of xerophytic vegetation in Eurasia is not supported by the data. Analysis of an asynchronous coupling of one model to an equilibrium-vegetation model suggests vegetation feedback exacerbates this mid-continental drying and produces conditions more unlike the observations. Not all features of the simulations are robust: some models produce winter warming over Europe while others produce winter cooling. As a result, some models show a northward shift of temperate forests (consistent with, though less marked than, the expansion shown by data) and others produce a reduction in temperate forests. Elucidation of the cause of such differences is a focus of the current phase of the Palaeoclimate Modelling Intercomparison Project.  相似文献   
18.
19.
The climates of the mid-Holocene (MH, 6,000 years ago) and the Last Glacial Maximum (LGM, 21,000 years ago) have been extensively documented and as such, have become targets for the evaluation of climate models for climate contexts very different from the present. In Part 1 of the present work, we have studied the MH and LGM simulations performed with the last two versions of the IPSL model: IPSL_CM4, run for the PMIP2/CMIP3 (Coupled Model Intercomparion Project) projects and IPSL_CM5A, run for the most recent PMIP3/CMIP5 projets. We have shown that not only are these models different in their simulations of the PI climate, but also in their simulations of the climatic anomalies for the MH and LGM. In the Part 2 of this paper, we first examine whether palaeo-data can help discriminate between the model performances. This is indeed the case for the African monsoon for the MH or for North America south of the Laurentide ice sheet, the South Atlantic or the southern Indian ocean for the LGM. For the LGM, off-line vegetation modelling appears to offer good opportunities to distinguish climate model results because glacial vegetation proves to be very sensitive to even small differences in LGM climate. For other cases such as the LGM North Atlantic or the LGM equatorial Pacific, the large uncertainty on the SST reconstructions, prevents model discrimination. We have examined the use of other proxy-data for model evaluation, which has become possible with the inclusion of the biogeochemistry morel PISCES in the IPSL_CM5A model. We show a broad agreement of the LGM–PI export production changes with reconstructions. These changes are related to the mixed layer depth in most regions and to sea-ice variations in the high latitudes. We have also modelled foraminifer abundances with the FORAMCLIM model and shown that the changes in foraminifer abundance in the equatorial Pacific are mainly forced by changes in SSTs, hence confirming the SST-foraminifer abundance relationship. Yet, this is not the case in all regions in the North Atlantic, where food availability can have a strong impact of foraminifer abundances. Further work will be needed to exhaustively examine the role of factors other than climate in piloting changes in palaeo-indicators.  相似文献   
20.
In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号