首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8021篇
  免费   459篇
  国内免费   37篇
测绘学   242篇
大气科学   819篇
地球物理   2025篇
地质学   3172篇
海洋学   464篇
天文学   1355篇
综合类   35篇
自然地理   405篇
  2023年   44篇
  2022年   56篇
  2021年   147篇
  2020年   181篇
  2019年   143篇
  2018年   353篇
  2017年   383篇
  2016年   499篇
  2015年   357篇
  2014年   409篇
  2013年   614篇
  2012年   474篇
  2011年   452篇
  2010年   444篇
  2009年   454篇
  2008年   341篇
  2007年   282篇
  2006年   280篇
  2005年   233篇
  2004年   245篇
  2003年   183篇
  2002年   183篇
  2001年   133篇
  2000年   108篇
  1999年   108篇
  1998年   93篇
  1997年   113篇
  1996年   73篇
  1995年   75篇
  1994年   89篇
  1993年   56篇
  1992年   37篇
  1991年   41篇
  1990年   68篇
  1989年   34篇
  1988年   26篇
  1987年   49篇
  1986年   32篇
  1985年   41篇
  1984年   43篇
  1983年   41篇
  1982年   41篇
  1981年   46篇
  1980年   34篇
  1979年   31篇
  1978年   25篇
  1977年   28篇
  1976年   20篇
  1974年   21篇
  1973年   24篇
排序方式: 共有8517条查询结果,搜索用时 31 毫秒
191.
The WNW–ESE trending Toulourenc Fault Zone (TFZ) is the western segment of the major Ventoux–Lure Fault Zone, which separates the Provençal platform from the Baronnies Vocontian Basin. The TFZ was subject to polyphased Mid-Cretaceous movements, during the Early Aptian and Middle–Late Albian times. The latter faulting episode generated conglomerates and olistoliths resulting from dismantled faultscarps cutting Barremian–Bedoulian limestones. The deformation is related to compressional wrench faulting (NE–SW sinistral faults; dextral component for the TFZ). It induced the uplift of the northwestern corner of the platform, as indicated by a mid-Cretaceous hiatus (Early Aptian pro parte to Early Albian) narrowly delimited in space. The opening of submeridian grabens within the platform favoured the northward transit of channelised coarse-grained Albian sands originating from a southern area. To cite this article: C. Montenat et al., C. R. Geoscience 336 (2004).  相似文献   
192.
Iron-reducing activity of autochthonous bacteria from two temporary hydromorphic soils is evaluated by the study of iron reductive dissolution, as a function of water content. The release of ferrous iron in solution is coupled to the mineralization of soil organic carbon. Water soil saturation is not necessary for iron reductive dissolution, since the highest dissolution is obtained for a wet, but not water-saturated soil (100% of water holding capacity WHC), and dissolution is also very high in a soil at 75% WHC. To cite this article: S.J. Stemmler et al., C. R. Geoscience 336 (2004).  相似文献   
193.
Structural interpretations of newly acquired seismic lines in northeastern Tunisia allow us to highlight a new thrust front for the Atlasic range of Tunisia, in contrast to the previously Zaghouan fault thrust Dorsale zone. This new thrust front takes place on weakness tectonic zones, materialized by inherited faults anchored on the pre-Triassic basement. This front seems to be a paleogeographic trend controlling structural style and basin fill with a synsedimentary activity. The front is expressed by reverse faults, thrust faults, back thrusting, and decollement structures. To cite this article: S. Khomsi et al., C. R. Geoscience 336 (2004).  相似文献   
194.
195.
196.
197.
Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciation and Trend Network (STN). If combined, these three networks provide speciated fine particulate data at several hundred locations throughout the United States. Yet, differences in sampling protocols and samples handling may not allow their joint use. With these concerns in mind, the objective of this study is to assess the spatial and temporal comparability of the sulfate, nitrate and ammonium concentrations reported by each of these networks. One of the major differences between networks is the sampling frequency they adopted. While CASTNet measures pollution levels on seven-day integrated samples, STN and IMPROVE data pertain to 24-hour samples collected every three days. STN and IMPROVE data therefore exhibit considerably more short-term variability than their CASTNet counterpart. We show that, despite their apparent incongruity, averaging the data with a window size of four to six weeks is sufficient to remove the effects of differences in sampling frequency and duration and allow meaningful comparison of the signals reported by the three networks of concern. After averaging, all the sulfate and, to a lesser degree, ammonium concentrations reported are fairly similar. Nitrate concentrations, on the other hand, are still divergent. We speculate that this divergence originates from the different types of filters used to collect particulate nitrate. Finally, using a rotated principal component technique (RPCA), we determined the number and the geographical organization of the significant temporal modes of variation (clusters) detected by each network for the three pollutants of interest. For sulfate and ammonium, the clusters’ geographical boundaries established for each network and the modes of variations within each cluster seem to correspond. RPCA erformed on nitrate concentrations revealed that, for the CASTNet and IMPROVE networks, the modes of variation do not correspond to unified geographical regions but are found more sporadically. For STN, the clustered areas are unified and easily delineable. We conclude that the possibility of jointly using the data collected by CASTNet, IMPROVE and STN has to be weighed pollutant by pollutant. While sulfate and ammonium data show some potential for joint use, at this point, combining the nitrate data from these monitoring networks may not be a judicious choice.  相似文献   
198.
Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5<Ml<4.3, show a crack shaped pattern (3 km long, 1 km wide) within the summit caldera extending at depth from –2 km to +2 km relative to sea level. This N-S elongated pattern coincides with the direction of the regional maximum horizontal stress as deduced from regional focal mechanism solutions. This brittle signature of the damage associated with the 1991 phreatic eruption is a typical pattern of the seismicity induced by controlled fluid injections such as those applied at geothermal fields, in oil and gas recovery, or for stress measurements. It suggests the 1991 phreatic eruption was driven by hydraulic fracturing induced by forced fluid flow. We propose that the extremely high LP and VT seismicity rates, relative to other effusive volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995.Editorial responsibility: H Shinohara  相似文献   
199.
The viscosity of synthetic peridotite liquid has been investigated at high pressures using in-situ falling sphere viscometry by combining a multi-anvil technique with synchrotron radiation. We used a newly designed capsule containing a small recessed reservoir outside of the hot spot of the heater, in which a viscosity marker sphere is embedded in a forsterite + enstatite mixture having a higher solidus temperature than the peridotite. This experimental setup prevents spheres from falling before a stable temperature above the liquidus is established and thus avoids difficulties in evaluating viscosities from velocities of spheres falling through a partially molten sample.

Experiments have been performed between 2.8 and 13 GPa at temperatures ranging from 2043 to 2523 K. Measured viscosities range from 0.019 (± 0.004) to 0.13 (± 0.02) Pa s. At constant temperature, viscosity increases with increasing pressure up to  8.5 GPa but then decreases between  8.5 and 13 GPa. The change in the pressure dependence of viscosity is likely associated with structural changes of the liquid that occur upon compression. By combining our results with recently published 0.1 MPa peridotite liquid viscosities [D.B. Dingwell, C. Courtial, D. Giordano, A. Nichols, Viscosity of peridotite liquid, Earth Planet. Sci. Lett. 226 (2004) 127–138.], the experimental data can be described by a non-Arrhenian, empirical Vogel-Fulcher-Tamman equation, which has been modified by adding a term to account for the observed pressure dependence of viscosity. This equation reproduces measured viscosities to within 0.08 log10-units on average. We use this model to calculate viscosities of a peridotitic magma ocean along a liquid adiabat to a depth of  400 km and discuss possible effects on viscosity at greater pressures and temperatures than experimentally investigated.  相似文献   

200.
Seal capacity estimation from subsurface pore pressures   总被引:1,自引:0,他引:1  
A cap rock's capacity to seal hydrocarbons depends on its wettability and the sizes of the pore throats within the interconnected pore system that the leaking hydrocarbons must penetrate. These critical pore throat sizes are often poorly constrained in hydrocarbon exploration, partly because measurements of pore throat sizes have not been performed, and partly because pore throat measurements on a few individual samples in the cap rock may not be representative for the seal capacity of the top seal as a whole. To the contrary, the presence of formation overpressure can normally be estimated in drilled exploration targets. The presence of overpressure in reservoirs testifies to small pore throats in the cap rocks, as large pore throats will result in sufficiently high cap rock permeability to bleed off the overpressure. We suggest a stepwise procedure that enables quantification of top seal capacities of overpressured traps, based on subsurface pressure information. This procedure starts with the estimation of cap rock permeabilities, which are consistent with observed overpressure gradients across the top seals. Knowledge of burial histories is essential for these estimations. Relationships between pore throat size and permeability from laboratory experiments are then applied to estimate critical pore throat diameters in cap rocks. These critical pore throat diameters, combined with information of the physical properties of the pore fluids, are then used to calculate membrane seal capacity of cap rocks. Estimates of top seal capacity based on this procedure are rather sensitive to the vertical fluid velocity, but they are also to some extent sensitive to inaccuracies of the pore throat/permeability relationship, overpressure gradient, interfacial tensions between pore fluids, hydrocarbon density and water viscosity values. Despite these uncertainties, applications of the above‐mentioned procedure demonstrated that the mere presence of reservoir overpressures testifies to sufficient membrane seal capacity of cap rocks for most geological histories. Exempt from this statement are basins with rapid and substantial sediment compaction in the recent past.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号