首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   691篇
  免费   29篇
  国内免费   6篇
测绘学   33篇
大气科学   43篇
地球物理   167篇
地质学   207篇
海洋学   110篇
天文学   107篇
综合类   2篇
自然地理   57篇
  2022年   8篇
  2021年   12篇
  2020年   16篇
  2019年   16篇
  2018年   23篇
  2017年   20篇
  2016年   28篇
  2015年   23篇
  2014年   19篇
  2013年   43篇
  2012年   29篇
  2011年   38篇
  2010年   38篇
  2009年   35篇
  2008年   29篇
  2007年   25篇
  2006年   29篇
  2005年   30篇
  2004年   28篇
  2003年   20篇
  2002年   25篇
  2001年   17篇
  2000年   9篇
  1999年   10篇
  1998年   13篇
  1997年   4篇
  1996年   7篇
  1995年   4篇
  1993年   12篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   7篇
  1987年   5篇
  1986年   9篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1981年   4篇
  1979年   7篇
  1978年   7篇
  1977年   3篇
  1976年   7篇
  1975年   7篇
  1974年   3篇
  1973年   4篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
  1940年   2篇
排序方式: 共有726条查询结果,搜索用时 671 毫秒
71.
72.
Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002)  相似文献   
73.
Sinkhole collapse in the area of Maryland Interstate 70 (I-70) and nearby roadways south of Frederick, Maryland, has been posing a threat to the safety of the highway operation as well as other structures. The occurrence of sinkholes is associated with intensive land development. However, the geological conditions that have been developing over the past 200 million years in the Frederick Valley control the locations of the sinkholes. Within an area of approximately 8 km2, 138 sinkholes are recorded and their spatial distribution is irregular, but clustered. The clustering indicates the existence of an interaction between the sinkholes. The point pattern of sinkholes is considered to be a sample of a Gibbsian point process from which the hard-core Strauss Model is developed. The radius of influence is calculated for the recorded sinkholes which are most likely to occur within 30 m of an existing sinkhole. The stochastic analysis of the existing sinkholes is biased toward the areas with intensive land use. This bias is adjusted by considering (1) topography, (2) proximity to topographic depressions, (3) interpreted rock formation, (4) soil type, (5) geophysical anomalies, (6) proximity to geologic structures, and (7) thickness of overburden. Based on the properties of each factor, a scoring system is developed and the average relative risk score for individual 30-m segments of the study area is calculated. The areas designated by higher risk levels would have greater risk of a sinkhole collapse than the areas designated by lower risk levels. This risk assessment approach can be updated as more information becomes available.  相似文献   
74.
This paper considers the hydrogeological simulation of groundwater movement in karstic regions using a hydrological modelling system (SHETRAN) which has been adapted for modelling flow in karstic aquifers. Flow and transport through karstic aquifers remains poorly understood, yet quantitative hydrogeological models are essential for developing and implementing groundwater protection policies. The new model has been developed and used within the STALAGMITE (Sustainable Management of Groundwater in Karstic Environments) project, funded by the European Commission. The SHETRAN model is physically based insofar as most of the parameters have some physical meaning. The SHETRAN model represents all of the key processes in the hydrological cycle, including subsurface flow in the saturated and unsaturated zones, surface flow over the ground surface and in channels, rainfall interception by vegetation canopies, evapotranspiration, snow-pack development and snowmelt. The modifications made to SHETRAN to simulate karstic aquifers are (1) the coupling of a pipe network model to a variably saturated, three-dimensional groundwater component (the VSS-NET component), to simulate flow under pressure in saturated conduits; (2) the coupling of surface water features (e.g. sinking streams or "ponors", and spring discharges) to the conduit system; (3) the addition of a preferential "bypass" flow mechanism to represent vertical infiltration through a high-conductivity epikarst zone. Lastly, a forward particle tracking routine has been developed to trace the path of hypothetical particles with matrix and pipe flow to springs or other discharge points. This component allows the definition of groundwater protection zones around a source for areas of the catchment (watershed) which are vulnerable to pollution from non-point sources (agriculture and forestry).  相似文献   
75.
Ambient atmospheric aerosols and savanna fireparticulate emission samples from southern Africa werecharacterised in terms of particle classes and theirnumber abundance by electron probe X-ray microanalysis(EPXMA). About ten particle classes were identifiedfor each sample. The major classes werealuminosilicates and sea salts for ambient coarse(2–10 m equivalent aerodynamic diameter (EAD))samples, and K-S and S-only particles for ambient fine(<2 m EAD) samples. The K-S particles are oneof the major products of biomass burning. The EPXMAresults were found to be consistent with the resultsfrom bulk analyses on a sample by sample basis. Forsavanna fire fine samples, quantitative EPXMA revealedthat many particles had a composition of simple saltssuch as KCl. Some particles had a deviatingcomposition in the sense that more ionic species wereinvolved in sustaining the balance between cations andanions, and they were composite or mixed salts.Because of extensive processing during the atmospherictransport, the composition of the K-S particles in theambient samples was different from K2SO4,and such particles were enriched with S. The finepyrogenic KCl particles and the fine sea-saltparticles were much depleted in chlorine.  相似文献   
76.
77.
Rb-Sr whole-rock analyses yield a Cambro-Ordovician (495 ± 11 m.y.) sedimentation age for the supposed Precambrian Greenland Group and a late Precambrian age, 680 ± 21 m.y., for parts of the Constant Gneiss, the first confirmation of Precambrian rocks in New Zealand. A Precambrian age for the Greenland Group is thus unlikely and the large area of Upper Cambrian-Lower Ordovician rocks now established can be considered as a lateral equivalent of the fossiliferous Lower Palaeozoic succession of northwest Nelson to the east. The Greenland Group, especially in the Paparoa Range has been affected subsequently by a thermal metamorphic overprint about 360 m.y. ago during the Tuhuan Orogeny. Although the Constant Gneiss must form the local basement to the Greenland Group in north Westland, the former does not appear to be the source of the sediments and the true provenance must lie elsewhere.  相似文献   
78.
Summary Direct access to the crust and the upper portion of the mantle may be achieved by letting a high temperature (>1100°C) reactor core melt the rock in which it is placed and fall through the resulting magma. Data gathering and retrieval seem feasible. A schematic design of the proposed instrument is given.There are many problems concerning the composition and conditions of the interior of the earth which will not be solved upon completion of the projectedMohole Project. Comparison of the continental crust with the oceanic crust, relative distribution of radioactivity under continents and oceans, and the investigation of the mantle itself require access to greater depths than the present drilling techniques permit. To achieve these aims, it is recommended that a dense, heatgenerating object (such as a nuclear reactor core) be placed in the top of a salt dome. The hot object would melt the salt and fall downward through the moten salt. The sinking object would pass out of the source salt bed into rock at such a depth, say 35 000 feet, that if a few percent of H2O is present at that depth, then a granitic rock would melt at about 700°C. However, encounter with SiO2 containing no water would require a much higher temperature of about 1700°C. The type of rock that actually exists immediately below the source salt bed is unknown, but it is probably not a granitic rock.Thermal considerations indicate that the hole will freeze shut after downward passage of the tool, leaving the tool inside a liquid bubble. If the tool can generate heat long enough to melt its way up, as well as down, it may be possible to obtain magma samples. Instrumentation for control and telemetry purposes appears extremely difficult. Initial emphasis is placed on attaining the depth of interest.  相似文献   
79.
New U–Pb detrital zircon ages from Triassic metasandstones of the Torlesse Terrane in New Zealand are compared with 40Ar/39Ar muscovite data and together, reveal four main source components: (i) major, Triassic–Permian (210–270 Myr old) and (ii) minor, Permian–Carboniferous (280–350 Myr old) granitoids (recorded in zircon and muscovite data); (iii) minor, early middle Palaeozoic, metamorphic rocks, recorded mainly by muscovite, 420–460 Myr old, and (iv) minor, Late Precambrian–Cambrian igneous and metamorphic complexes, 480–570 Myr old, recorded by zircon only. There are also Proterozoic zircon ages with no clear grouping (580–1270 Myr). The relative absence of late Palaeozoic (350–420 Myr old) components excludes granitoid terranes in the southern Lachlan Fold Belt (Australia) and its continuation into North Victoria Land (East Antarctica) and Marie Byrd Land (West Antarctica) as a potential source for the Torlesse. The age data are compatible with derivation from granitoid terranes of the northern New England Orogen (and hinterland) in NE Australia. This confirms that the Torlesse Terrane of New Zealand is a suspect terrane, that probably originated at the NE Australian, Permian–Triassic, Gondwanaland margin and then (200–120 Ma) moved 2500 km southwards to its present New Zealand position by the Late Cretaceous (90 Ma). This sense of movement is analogous to that suggested for Palaeozoic Mesozoic terranes at the North American Pacific margin.  相似文献   
80.
Water is a limiting factor for life in the McMurdo Dry Valleys (MDV), Antarctica. The active layer (seasonally thawed soil overlying permafrost) accommodates dynamic hydrological and biological processes for 10–16 weeks per year. Wetted margins (visually wetted areas with high moisture content) adjacent to lakes and streams are potential locations of great importance in the MDV because of the regular presence of liquid water, compared with the rest of the landscape where liquid water is rare. At 11 plots (four adjacent to lakes, seven adjacent to streams), soil particle size distribution, soil electrical conductivity, soil water content and isotopic signature, width of the wetted margin, and active layer thaw depth were characterised to determine how these gradients influence physicochemical properties that determine microbial habitat and biogeochemical cycling. Sediments were generally coarse‐grained in wetted margins adjacent to both lakes and streams. Wetted margins ranged from 1·04 to 11·01 m in average length and were found to be longer at lakeside sites than streamside. Average thaw depths ranged from 0·12 to 0·85 m, and were found to be deepest under lake margins. Lake margins also had much higher soil electrical conductivity, steeper topographic gradients, but more gradual soil moisture gradients than stream margins. Patterns of soil water δ18O and δD distribution indicate capillary action and evaporation from wetted margins; margin pore waters generally demonstrated isotopic enrichment with distance from the shore, indicating evaporation of soil water. Lake margin pore waters were significantly more negative in DXS (DXS = δD‐8δ18O) than streamside pore waters, indicating a longer history of evaporation there. Differences between lake and stream margins can be explained by the more consistent availability of water to lake margins than stream margins. Differences in margin characteristics between lakes and streams have important consequences for the microbial habitat of these margins and their functional role in biogeochemical cycling at these terrestrial–aquatic interfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号