首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
大气科学   9篇
地球物理   4篇
地质学   17篇
  2022年   1篇
  2017年   3篇
  2016年   6篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2005年   2篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
11.
12.
During 23–30 September 1997, a rare cyclonic storm has developed close to the Andhra coast, and it has later travelled parallel to coastline northward and finally crossed the land at Chittagong (22°N, 91°E) on 27 September. While translating along the east coast of India, it has produced heavy to very heavy rainfall on the coastal stations causing devastating floods. In this study, we made an attempt to understand the salient causes of this unique cyclone movement. We have analyzed daily fields of wind and relative humidity for 850, 700, 500 hPa and mean daily OLR data to understand the plausible reasons for its movement. The buoy data deployed by National Institute of Ocean Technology, Chennai, Viz. DS5 (15°N, 81°E), DS4 (19°N, 88°E) and SW7 (20°N, 86°E) were analyzed to understand the ocean–atmosphere interaction processes in the west Bay of Bengal during formation of the system. Analysis of OLR over the cyclonic storm region has revealed that the heavy rainfall areas coincide with low OLR (120–180 W m?2). The persistent southward movement of 500 hPa ridge on the eastern wedge of the system along with the steering current at 200 hPa has helped in maintaining the movement of the system parallel to the east coast of India during its life cycle.  相似文献   
13.
Environmental geochemical studies were carried out to find out the extent of contamination in sediments due to heavy metals in Balanagar industrial area, Hyderabad, Andhra Pradesh, India. The industrial area consisting of 350 small and large industries manufacturing battery, steel planting, pharmaceutical chemicals, metal plating, etc. The present study was undertaken on sediment contamination in Balanagar industrial area, to determine extent and distribution of heavy metals (Cu, Cr, Ni, Pb, Zn, As) and to delineate the source. There is no treatment plant in the industrial area, and many industries release the effluents into nearby nalas and lakes. Solid waste from the industries is also being dumped along the roads and near the open grounds due to which heavy metals migrate from solid waste to the groundwater. The sediments samples were collected from the study area in clean polythene covers and were analyzed for their heavy metals by X-ray fluorescence spectrometry. The concentration ranges of different heavy metals were Cr, 96.2–439.6 mg/kg; Cu, 95.7–810 mg/kg; Ni, 32.3–13,068.2 mg/kg; Pb, 59.2–512 mg/kg; Zn, 157.1–4,630.5 mg/kg; Co, 1.8–48.3 mg/kg; and V, 35.2–308.5 mg/kg. High concentration of heavy metals in sediments can be attributed to some pharmaceutical and metal industries in the study area. Based on the results obtained, suitable remedial measures can be adopted such as phytoremediation and bio-remediation for reduction of heavy metals in sediments.  相似文献   
14.
The concentration of heavy metals such as Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn, Zr were studied in soils of Balanagar industrial area, Hyderabad to understand heavy metal contamination due to industrialization and urbanization. This area is affected by the industrial activities like steel, petrochemicals, automobiles, refineries, and battery manufacturing generating hazardous wastes. The assessment of the contamination of the soils was based on the geoaccumulation index, enrichment factor (EF), contamination factor, and degree of contamination. Soil samples were collected from Balanagar industrial area from top 10–50 cm layer of soil. The samples were analyzed using X-ray fluorescence spectrometer for heavy metals. The data revealed that the soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Cr (82.2–2,264 mg/kg), Cu (31.3–1,040 mg/kg), Ni (34.3–289.4 mg/kg), Pb (57.5–1,274 mg/kg), Zn (67.5–5819.5 mg/kg), Co (8.6–54.8 mg/kg), and V (66.6–297 mg/kg). The concentration of above-mentioned other elements was similar to the levels in the earth’s crust pointed to metal depletion in the soil as the EF was <1. Some heavy metals showed high EF in the soil samples indicating that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may results in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   
15.
Concentrations of trace elements such as As, Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn and Zr were studied in soils to understand metal contamination due to agriculture and geogenic activities in Chinnaeru River Basin, Nalgonda District, India. This area is affected by the geogenic fluoride contamination. The contamination of the soils was assessed on the basis of geoaccumulation index, enrichment factor (EF), contamination factor and degree of contamination. Forty-four soil samples were collected from the agricultural field from the study area from top 10–50 cm layer of soil. Soil samples were analyzed for trace elements using X-ray fluorescence spectrometer. Data revealed that soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Ba (370–1,710 mg/kg), Cr (8.7–543 mg/kg), Cu (7.7–96.6 mg/kg), Ni (5.4–168 mg/kg), Rb (29.6–223 mg/kg), Sr (134–438 mg/kg), Zr (141.2–8,232 mg/kg) and Zn (29–478 mg/kg). The concentration of other elements was similar to the levels in the earth’s crust or pointed to metal depletion in the soil (EF < 1). The high EFs for some trace elements obtained in soil samples show that there is a considerable heavy metal pollution, which could be due to excessive use of fertilizers and pesticides used for agricultural or may be due to natural geogenic processes in the area. Comparative study has been made with other soil-polluted heavy metal areas and its mobility in soil and groundwater has been discussed. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may result in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   
16.
Abstract

The resolution of the freshwater and saline water aquifers in a coastal terrain (Mahanadi Basin, India) is updated. We analysed electrical borehole log data at four sites and compared the water resistivity regime of the freshwater and saline water zones obtained from electrical borehole logging, with the resistivity regime obtained by interpreting vertical electrical sounding (VES) data. The multilayer VES data interpretation is modified to a simple model, containing only the freshwater zone and the saline water zone. The composite geophysical parameters of the freshwater and saline water zones, in particular the resistivity and longitudinal unit conductance regime, are identified. The resolution obtained from the composite geophysical data analyses is very clear and convincing. The composite longitudinal unit conductance regime of the saline water zones is very high compared to that of the freshwater zones. This makes the identification of the two aquifers easy and increases its reliability. A technique which enables analysis of composite geophysical data of freshwater and saline water zones at VES sites in the vicinity of the borehole log sites is proposed. The significance of longitudinal unit conductance in resolving the freshwater and saline water aquifers is illustrated graphically. The proposed technique is validated by correlating the longitudinal unit conductance and resistivity with the total dissolved solids. The efficiency of the technique is validated by carrying out discriminant function analysis.

Citation Hodlur, G. K., Dhakate, R., Sirisha, T. & Panaskar, D. B. (2010) Resolution of freshwater and saline water aquifers by composite geophysical data analysis methods. Hydrol. Sci. J. 55(3), 414–434.  相似文献   
17.
Micro-meteorological tower observations of MONTBLEX (Monsoon Trough Boundary Layer Experiment)-1990, combined with routine surface observations at Jodhpur in the dry convective sector of Indian summer monsoon trough are used to examine the interrelationship between total cloud cover (TCC) and surface sensible heat flux (SHF) during the summer monsoon of 1990. A significant inverse relationship between TCC and SHF is found during various Intensive Observation Periods of the experiment. This relationship holds for the various methods of estimation of SHF.  相似文献   
18.
National Centers for Environmental Prediction (NCEP) Coupled Forecast System (CFS) is selected to play a lead role for monsoon research (seasonal prediction, extended range prediction, climate prediction, etc.) in the ambitious Monsoon Mission project of Government of India. Thus, as a prerequisite, a detail analysis for the performance of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon (ISM) is attempted. It is found that the mean monsoon simulations by CFS in its long run are at par with the IPCC models. The spatial distribution of rainfall in the realm of Indian subcontinent augurs the better results for CFS as compared with the IPCC models. The major drawback of CFS is the bifurcation of rain types; it shows almost 80–90 % rain as convective, contrary to the observation where it is only 50–65 %; however, the same lacuna creeps in other models of IPCC as well. The only respite is that it realistically simulates the proper ratio of convective and stratiform rain over central and southern part of India. In case of local air–sea interaction, it outperforms other models. However, for monsoon teleconnections, it competes with the better models of the IPCC. This study gives us the confidence that CFS can be very well utilized for monsoon studies and can be safely used for the future development for reliable prediction system of ISM.  相似文献   
19.
Groundwater and surface water samples from 47 locations (28 groundwater, 10 tanks and 9 stream channel) were collected during the pre-monsoon (May–June) and post-monsoon season (November) from Chinnaeru River basin. Chinnaeru River basin is situated 30 km east of Hyderabad City and its area covers 250 km2 and falls in the Survey of India Toposheet No. 56 K/15. The extensive agricultural, industrial and urbanization activities resulted in the contamination of the aquifer. To study the contamination of groundwater, water samples were collected from an area and analyzed for major cations and anions. Various widely accepted methods such as salinity, sodium absorption ratio, Kelly’s ratio, residual sodium carbonate, soluble sodium percentage, permeability index and water quality index are used to classify groundwater and surface water (tank and stream) for drinking as well as irrigation purposes. Besides this, Piper trilinear diagram, Wilcox diagram, Doneen’s classification and Gibb’s plot were studied for geochemical controls, and hydrogeochemistry of groundwater and surface water samples were studied.  相似文献   
20.
Hydrochemical studies were conducted in Chinnaeru river basin of Nalgonda district, Andhra Pradesh, India, to explore the causes of high fluorides in groundwater and surface water causing a widespread incidence of fluorosis in local population. The concentration of fluoride in groundwater ranges from 0.4 to 2.9 and 0.6 to 3.6 mg/l, stream water ranges from 0.9 to 3.5 and 1.4 to 3.2 mg/l, tank water ranges from 0.4 to 2.8 and 0.9 to 2.3 mg/l, for pre- and post-monsoon periods, respectively. The modified Piper diagram reflects that the water belongs to Ca2+–Mg2+–HCO3 ? to Na+–HCO3 ? facies. Negative chloroalkali indices in both the seasons prove that ion exchange between Na+ and K+ in aquatic solution took place with Ca2+ and Mg2+ of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water–rock interaction is responsible for major ion chemistry of groundwater/surface water. High fluoride content in groundwater was attributed to continuous water–rock interaction during the process of percolation with fluorite bearing country rocks under arid, low precipitation, and high evaporation conditions. The low calcium content in rocks and soils, and the presence of high levels of sodium bicarbonate are important factors favouring high levels of fluoride in waters. The basement rocks provide abundant mineral sources of fluoride in the form of amphibole, biotite, fluorite, mica and apatite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号