首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   21篇
  国内免费   19篇
测绘学   5篇
大气科学   36篇
地球物理   120篇
地质学   199篇
海洋学   45篇
天文学   145篇
综合类   18篇
自然地理   31篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   16篇
  2020年   5篇
  2019年   15篇
  2018年   26篇
  2017年   28篇
  2016年   31篇
  2015年   30篇
  2014年   29篇
  2013年   30篇
  2012年   17篇
  2011年   36篇
  2010年   35篇
  2009年   34篇
  2008年   39篇
  2007年   41篇
  2006年   24篇
  2005年   17篇
  2004年   19篇
  2003年   19篇
  2002年   14篇
  2001年   17篇
  2000年   12篇
  1999年   6篇
  1998年   13篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1981年   2篇
  1972年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1962年   2篇
  1961年   1篇
  1960年   2篇
排序方式: 共有599条查询结果,搜索用时 15 毫秒
571.
572.
573.
We have studied the lateral velocity variations along a partly buried inverted paleo–rift in Central Lapland, Northern Europe with a 2D wide-angle reflection and refraction experiment, HUKKA 2007. The experiment was designed to use seven chemical explosions from commercial and military sites as sources of seismic energy. The shots were recorded by 102 stations with an average spacing of 3.45 km. Two-dimensional crustal models of variations in P-wave velocity and Vp/Vs-ratio were calculated using the ray tracing forward modeling technique. The HUKKA 2007 experiment comprises a 455 km long profile that runs NNW–SSE parallel to the Kittilä Shear Zone, a major deformation zone hosting gold deposits in the area. The profile crosses Paleoproterozoic and reactivated Archean terranes of Central Lapland. The velocity model shows a significant difference in crustal velocity structure between the northern (distances 0–120 km) and southern parts of the profile. The difference in P-wave velocities and Vp/Vs ratio can be followed through the whole crust down to the Moho boundary indicating major tectonic boundaries. Upper crustal velocities seem to vary with the terranes/compositional differences mapped at the surface. The lower layer of the upper crust displays velocities of 6.0–6.1 km/s. Both Paleoproterozoic and Archean terranes are associated with high velocity bodies (6.30–6.35 km/s) at 100 and 200–350 km distances. The Central Lapland greenstone belt and Central Lapland Granitoid complex are associated with a 4 km-thick zone of unusually low velocities (<6.0 km/s) at distances between 120 and 220 km. We interpret the HUKKA 2007 profile to image an old, partly buried, inverted continental rift zone that has been closed and modified by younger tectonic events. It has structural features typical of rifts: inward dipping rift shoulders, undulating thickness of the middle crust, high velocity lower crust and a rather uniform crustal thickness of 48 km.  相似文献   
574.
Rainfall is a phenomenon difficult to model and predict, for the strong spatial and temporal heterogeneity and the presence of many zero values. We deal with hourly rainfall data provided by rain gauges, sparsely distributed on the ground, and radar data available on a fine grid of pixels. Radar data overcome the problem of sparseness of the rain gauge network, but are not reliable for the assessment of rain amounts. In this work we investigate how to calibrate radar measurements via rain gauge data and make spatial predictions for hourly rainfall, by means of Monte Carlo Markov Chain algorithms in a Bayesian hierarchical framework. We use zero-inflated distributions for taking zero-measurements into account. Several models are compared both in terms of data fitting and predictive performances on a set of validation sites. Finally, rainfall fields are reconstructed and standard error estimates at each prediction site are shown via easy-to-read spatial maps.  相似文献   
575.
576.
577.
Shaking table tests were conducted on a scaled reinforced concrete waffle–flat plate structure. It represented a conventional construction design under current building codes in the Mediterranean area. The test structure was subjected to a sequence of four seismic simulations of increasing magnitude. Each simulation was associated with a seismic hazard level characterized by the mean return period PR. The test structure performed well for the simulations associated with PR = 95, 475 and 975 years but collapsed under the maximum considered earthquake of PR = 2475 years. Damage concentrated at column bases, where the maximum chord rotation reached 93% of the ultimate capacity, and at the transverse beams of the exterior plate‐to‐column connection that failed in torsion. It is shown that most (from 85% to 90%) of the energy input by the earthquake that contributes to damage is dissipated by the plate. The capacity curve of the tested structure estimated from the experimental base shear vs. top displacement relationship allowed us to compute the overstrength (1.4). It is close to the maximum established by European code EN 1998‐1 (1.5). Based on a detailed study of the test results, potential updates to current codes and design recommendations are suggested. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
578.
The solution of energy-balance model of the Earth global climate and the EPICA Dome C and Vostok experimental data of the Earth surface palaeotemperature evolution over past 420 and 740 kyr are compared.In the framework of proposed bifurcation model (i) the possible sharp warmings of the Dansgaard-Oeschger type during the last glacial period due to stochastic resonance is theoretically argued; (ii) the concept of climatic sensitivity of water in the atmosphere, whose temperature instability has the form of so-called hysteresis loop, is proposed, and based on this concept the time series of global ice volume over the past 1000 kyr, which is in good agreement with the time series of δ18O concentration in the sea sediments, is obtained; (iii) the so-called “CO2 doubling” problem is discussed.  相似文献   
579.
Larvae of the genus Pseudodiamesa Goetghebuer, which includes 12 described valid species and is divided by Makarchenko and Makarchenko (1999) into two species groups, Pseudodiamesa branickii group and Pseudodiamesa nivosa group, are widespread in lakes and running waters of cold, high-latitude and high-altitude areas of the Northern Hemisphere. Larval remains of the genus are often found in subfossil assemblages from these cold regions, but intra-genus morphotypes usually are not distinguished by palaeoecologists. Current knowledge of the ecology of the species indicates that the Pseudodiamesa nivosa group is more cold-adapted than the Pseudodiamesa branickii group and, therefore, these two intra-genus morphotypes cannot be amalgamated into a larger taxonomic unit without losing substantial information. Here we present the morphological characters of head capsules of Pseudodiamesa larvae attributed to the different species-group morphotypes, which are clearly visible in subfossil specimens. The information summarized in this paper will help provide more reliable chironomid-based palaeoclimatic inferences from lake sediment records covering colder phases through the late Quaternary in the Northern Hemisphere.  相似文献   
580.
Biological characterization of Corylus avellana L. and Pinus nigra L. pollen samples was carried out to determine the actual value of pollen as a bio-indicator of the effects of atmospheric pollution, using samples from plants naturally developed in sites controlled for air pollution. In Trentino (North Italy), we selected six stations at three different levels of air pollution, which are constantly monitored with automatic gauges by the Environmental Protection Agency of Trento.First results showed that pollen viability of both species, germinability and pollen tube length of P. nigra, were higher in areas with no road traffic compared to heavy traffic ones. Pollen viability of P. nigra was positively correlated to ozone (O3) concentrations and altitude but negatively to sulphur dioxide (SO2), particulate matter with a diameter less than 10 m (PM10), nitrogen oxides (NOx) and nitrogen dioxide (NO2) concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号