首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1601篇
  免费   76篇
  国内免费   29篇
测绘学   39篇
大气科学   176篇
地球物理   359篇
地质学   592篇
海洋学   131篇
天文学   248篇
综合类   4篇
自然地理   157篇
  2023年   5篇
  2022年   9篇
  2021年   30篇
  2020年   33篇
  2019年   21篇
  2018年   48篇
  2017年   40篇
  2016年   74篇
  2015年   45篇
  2014年   65篇
  2013年   109篇
  2012年   54篇
  2011年   98篇
  2010年   83篇
  2009年   91篇
  2008年   90篇
  2007年   93篇
  2006年   93篇
  2005年   61篇
  2004年   62篇
  2003年   47篇
  2002年   47篇
  2001年   39篇
  2000年   31篇
  1999年   36篇
  1998年   23篇
  1997年   19篇
  1996年   19篇
  1995年   16篇
  1994年   12篇
  1993年   16篇
  1992年   7篇
  1991年   17篇
  1990年   15篇
  1989年   15篇
  1987年   12篇
  1986年   16篇
  1985年   8篇
  1984年   5篇
  1983年   14篇
  1982年   12篇
  1981年   13篇
  1980年   12篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   4篇
  1974年   7篇
  1973年   5篇
排序方式: 共有1706条查询结果,搜索用时 109 毫秒
131.
The α turbulent viscosity formalism for accretion discs must be interpreted as a mean field theory, modelling a steady state only on spatial or time-scales greater than those of the turbulence. The extent of the scale separation determines the relative precision error (RPE) of the predicted luminosity L ν. Turbulence and the use of α implies that (1) field line stretching gives a magnetic pressure  α2/6 of the total pressure generally, and a one-to-one relation between α and the pressure ratio for thin discs, and (2) large turbulent scales in advection-dominated accretion flows (ADAFs) predict a lower L ν precision than thin discs for a given observation duration and central mass. The allowed variability (or RPE) at frequency ν increases with the size of the contributing region. For X-ray binary ADAFs, the RPE ∼ 5 per cent at R  ≤ 1000 Schwarzchild radii ( R s) for averages over  1000 s. However, current data for galaxies like NGC 4258 and M87 give RPEs in L ν of 50–100 per cent even at R  ≤ 100  R S. More data are required, but systematic deviations from ADAF predictions are more significant than random deviations, and may constrain properties of the turbulence, the accretion mode, the assumption of a steady state or the accretion rate.  相似文献   
132.
133.
Costa Rica forms part of an intra-oceanic arc between the Pacific and Caribbean oceans; the Nicoya Ophiolite Complex is located along its Pacific border. In this study, evidence is given that the Nicoya Complex is composed of ridge-formed oceanic crust that suffered a strong compressional stress during Late Santonian times. As a result of this, isoclinal folding and large-scale nappe emplacement occurred at a shallow crustal depth. The principal component of this compressional stress was E-W-directed. It is also demonstrated that, from this time, the complex was situated between a subducting plate and a volcanic arc. From that Campanian until the Middle Eocene the zone was undulated, and generally at a great depth below sea level. During the Eocene—Oligocene epoch a new tectonic stress affected the area. It produced open folding with upthrusting in the ophiolite complex and overthrust folding of the overlying rock series. As a result of crustal thickening during this tectonic phase, the area was uplifted. From Miocene times, the zone was shaped into a dome and a synform. These undulations are attributed to compression of the subducting Coco Plate, west of the area.The Upper Santonian tectonic phase demonstrates how compressional stress produced the break-up of the Caribo-Pacific plate west of the study area, as a result of which, a Caribbean plate without an associated oceanic ridge and a Pacific plate originated. The compressional stress in question was presumably generated by the opposed spreading directions of the new Mid-Atlantic Ridge and an older ridge to the west of the study area.Furthermore, it is argued that the Cretaceous obduction of the ophiolite belt along the Pacific coast of the American continents, was produced by the directional change of these continents during the birth of the Mid-Atlantic Ridge. This created intra-plate compressional stress and converted originally passive continental margins into active zones, where thrusting of oceanic crust on to a continental margin (obduction) could occur. When the Mid-Atlantic Ridge started spreading, the obduction phase ended due to subduction of the oceanic plate below the leading edge of the continent.  相似文献   
134.
It has been suggested that iodine oxides, IOx, could play a significant role in the ozone destruction in the lower stratosphere. To investigate this suggestion, spectra from nine SAOZ uv-visible spectrometer balloon flights were examined for the IO absorption signature between 405 and 450 nm. IO was not detected, either at mid- or high latitude, in the morning or the evening, in summer or winter. An upper limit of 0.2 parts per trillion by volume (pptv) at 20 km and 0.1 pptv at 15 km at the 95% confidence level (2), was derived from the best measurements at 90° SZA at sunset and sunrise. Since a photochemical model shows that 70% of inorganic iodine should be in the form IO at that time, it is concluded that unless iodine chemistry is different from that assumed at the moment, the role of iodine in stratospheric ozone depletion is small.  相似文献   
135.
136.
Extraterrestrial calcium phosphates (“whitlockites”) have the anhydrous β-Ca3(PO4)2 structure, which is different from that of hydrous terrestrial whitlockite. This has been confirmed by X-ray refinement of the structure of a phosphate from the achondrite Angra dos Reis. In the β-Ca3(PO4)2 structure, there is one crystallographic site, Ca(IIA), which is half-occupied by calcium, and which seems to have an energetically unfavorable configuration; natural phosphates with this configuration (including Angra dos Reis) have composition Ca19(Mg,Fe)2(PO4)14. Stability of the structure is probably increased by substitution of Na for Ca in Ca(IIA) giving composition Ca18 (Mg,Fe)2Na2(PO4)14, which occurs in chondrites; by vacancy of Ca(IIA), with rare earths and yttrium substituting for calcium in other sites for charge balance, giving composition Ca16(Y,RE)2(Mg,Fe)2(PO4)14, found in lunar rocks; or by replacing Ca with hydrogen, giving composition Ca18(Mg,Fe)2H2(PO4)14, which is terrestrial whitlockite. Lack of the favorable substitutions of Na, (Y, RE) or H in Angra dos Reis phosphate implies that these elements were relatively scarce in its environment of formation.  相似文献   
137.
For accurate mathematical modeling of trace-element partitioning during igneous fractionation, adsorption should be considered. Because of adsorption, the partitioning of elements between liquid and a surface layer of a crystal is often not the same as the partitioning between liquid and the solid crystal at true equilibrium. In some minerals e.g. high-calcium pyroxene, the effect of adsorption during crystal growth may be very important; this is suggested by the frequent occurrence of sector zoning in augite, and the wide range in measured partition coefficients for such elements as rare earths. The ions which are enriched by adsorption are usually those which are favored substituents according to Goldschmidt's rules. In other minerals, uptake of trace elements may be closer to equilibrium partitioning, rather than being determined by kinetic factors. For example, the relative partitioning of REE, U, Th and Pb into feldspars is qualitatively predicted by Pauling's rules for complex ionic crystals, rather than by Goldschmidt's rules.  相似文献   
138.
Eight of eleven Apollo 16 rake-sample anorthosites are very similar to each other, to hand-specimen Apollo 16 anorthosites, and to Apollo 15 anorthosites. They have feldspar An96.6, both high- and low-Ca pyroxene with a restricted range of (low-magnesium) composition, minor olivine (~ Fo60), traces of ilmenite and chromite, and originally coarse-grained, but now cataclastic texture. Such ferroan anorthosite is evidently a coherent, distinctive and widespread lunar rock type of cumulate origin which may not necessarily be very closely related genetically to other highland rock types.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号