首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
大气科学   9篇
地球物理   9篇
地质学   1篇
海洋学   1篇
天文学   1篇
自然地理   1篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
排序方式: 共有22条查询结果,搜索用时 218 毫秒
21.
A technique allowing inversion of the shale stiffness tensor from standard logging data: sonic velocities, density, porosity and clay content is developed. The inversion is based on the effective medium theory. The testing of the technique on laboratory measurements of the elastic wave velocities in shale samples shows that the inversion makes it possible to predict the elastic wave velocities VP, VS1 and VS2 in any direction within an error of a few per cent. The technique has been applied for the stiffness tensor inversion along a well penetrating a shale formation of the Mississippian age altered by thin layers of limestone. It is demonstrated that the symmetry of a stiffness tensor inverted at the sonic frequency (2 kHz) is slightly orthorhombic and taking into account the experimental errors, can be related to the vertical transverse isotropy symmetry. For the productive interval of the shale formation, the Thomsen parameters ?, γ, and δ average, respectively, 0.32, 0.25 and 0.21, which indicate anelliptic behaviour of the velocities in this shale. The coefficients of anisotropy of this shale interval are around 24% and 20% for the compressional and shear waves, respectively. The values of the inverted velocities in the bedding plane for this interval are in good agreement with the laboratory measurements. The technique also allows inversion of the water saturation of the formation (Sw) and the inverted values are in agreement with the Sw values available for this formation. A Backus‐like upscaling of the inverted stiffness tensors is carried out for the lower and upper bounds of the frequency band used in the crosswell tomography (100 Hz and 500 Hz). These results can serve as an initial velocity model for the microearthquake location during hydrofracking of the shale formation.  相似文献   
22.
Six state-of-the-art large-eddy simulation codes were compared in Fedorovich et al. (Preprints, 16th American Meteorological Society Symposium on Boundary Layers and Turbulence, 2004b) for three airflow configurations in order to better understand the effect of wind shear on entrainment dynamics in the convective boundary layer CBL). One such code was the University of Oklahoma large-eddy simulation (LES) code, which at the time employed a second-order leapfrog time-advancement scheme with the Asselin filter. In subsequent years, the code has been updated to use a third-order Runge–Kutta (RK3) time-advancement scheme. This study investigates what effect the upgrade from the leapfrog scheme to RK3 scheme has on turbulence statistics in the CBL differently affected by mean wind shear, also in relation to predictions by other LES codes that participated in the considered comparison exercise. In addition, the effect of changing the Courant number within the RK3 scheme is investigated by invoking the turbulence spectral analysis. Results indicate that low-order flow statistics obtained with the RK3 scheme generally match their counterparts from simulations with the leapfrog scheme rather closely. CBL growth rates due to entrainment in the shear-free case were also similar using both timestepping schemes. It was found, however, that care should be given to the choice of the Courant number value when running LES with the RK3 scheme in the sheared CBL setting. The advantages of the largest possible (based on the stability criterion) Courant number were negated by degrading the energy distribution across the turbulence spectrum. While mean profiles and low-order turbulence statistics were largely unaffected, the entrainment rate was over-predicted compared to that reported in the original code-comparison study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号