首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32844篇
  免费   2151篇
  国内免费   3718篇
测绘学   2403篇
大气科学   4017篇
地球物理   6433篇
地质学   16468篇
海洋学   2129篇
天文学   1944篇
综合类   3040篇
自然地理   2279篇
  2024年   40篇
  2023年   200篇
  2022年   505篇
  2021年   608篇
  2020年   493篇
  2019年   549篇
  2018年   5226篇
  2017年   4508篇
  2016年   3091篇
  2015年   851篇
  2014年   731篇
  2013年   690篇
  2012年   1584篇
  2011年   3320篇
  2010年   2651篇
  2009年   2843篇
  2008年   2369篇
  2007年   2819篇
  2006年   490篇
  2005年   570篇
  2004年   648篇
  2003年   615篇
  2002年   468篇
  2001年   278篇
  2000年   296篇
  1999年   306篇
  1998年   292篇
  1997年   265篇
  1996年   243篇
  1995年   192篇
  1994年   176篇
  1993年   161篇
  1992年   129篇
  1991年   91篇
  1990年   70篇
  1989年   68篇
  1988年   63篇
  1987年   33篇
  1986年   35篇
  1985年   20篇
  1984年   15篇
  1983年   14篇
  1982年   9篇
  1981年   30篇
  1980年   23篇
  1979年   6篇
  1976年   7篇
  1975年   5篇
  1958年   10篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The present paper focuses on heat and mass exchange processes in methane hydrate fragments during in situ displacement from the gas hydrate stability zone (GHSZ) to the water surface of Lake Baikal. After being extracted from the methane hydrate deposit at the lakebed, hydrate fragments were placed into a container with transparent walls and a bottom grid. There were no changes in the hydrate fragments during ascent within the GHSZ. The water temperature in the container remained the same as that of the ambient water (~3.5 °С). However, as soon as the container crossed the upper border of the GHSZ, first signs of hydrate decomposition and transformation into free methane gas were observed. The gas filled the container and displaced water from it. At 300 m depth, the upper and lower thermometers in the container simultaneously recorded noticeable decreases of temperature. The temperature in the upper part of the container decreased to –0.25 °С at about 200 m depth, after which the temperature remained constant until the water surface was reached. The temperature at the bottom of the container reached –0.25 °С at about 100 m depth, after which it did not vary during further ascent. These observed effects could be explained by the formation of a gas phase in the container and an ice layer on the hydrate surface caused by heat consumption during hydrate decomposition (self-preservation effect). However, steady-state simulations suggest that the forming ice layer is too thin to sustain the hydrate internal pressure required to protect the hydrate from decomposition. Thus, the mechanism of self-preservation remains unclear.  相似文献   
992.
During expedition 202 aboard the RV Sonne in 2009, 39 seafloor surface sediment sites were sampled over a wide sector of the North Pacific and adjoining Bering Sea. The data served to infer land–ocean linkages of terrigenous sediment supply in terms of major sources and modes of sediment transport within an over-regional context. This is based on an integrated approach dealing with grain-size analysis, bulk mineralogy and clay mineralogy in combination with statistical data evaluation (end-member modelling of grain-size data, fuzzy cluster analysis of mineralogical data). The findings on clay mineralogy served to update those of earlier work extracted from the literature. Today, two processes of terrigenous sediment supply prevail in the study area: far-distance aeolian sediment supply to the pelagic North Pacific, and hemipelagic sediment dispersal from nearby land sources via ocean currents along the continental margins and island arcs. Aeolian particles show the finest grain sizes (clay and fine silt), whereas hemipelagic sediments have high abundances of coarse silt. Exposed sites on seamounts and the continental slope are partly swept by strong currents, leading to residual enrichment of fine sand. Four sediment sources can be distinguished on the basis of distinct index minerals revealed by statistical data analysis: dust plumes from central Asia (quartz, illite), altered materials from the volcanic regions of Kamchatka and the Aleutian Arc (smectite), detritus from the Alaskan Cordillera (chlorite, hornblende), and fluvial detritus from far-eastern Siberia and the Alaska mainland (quartz, feldspar, illite). These findings confirm those of former studies but considerably expand the geographic range of this suite of proxies as far south as 39°N in the open North Pacific. The present integrated methodological approach proved useful in identifying the major modern processes of terrigenous sediment supply to the study region. This aspect deserves attention in the selection of sediment core sites for future palaeoenvironmental reconstructions related to aeolian and glacial dynamics, as well as the recognition of palaeo-ocean circulation patterns in general.  相似文献   
993.
Factors influencing millennial-scale variability in the thermocline depth (vertical mixing) and sea surface salinity (SSS) of the southern Okinawa Trough (OT) during the past 17,300 years were investigated based on foraminifer oxygen isotope records of the surface dweller Globigerinoides ruber sensu stricto and the thermocline dweller Pulleniatina obliquiloculata in the AMS 14C dated OKT-3 core. The thermocline depth is influenced by surface thermal buoyancy (heat) flux, in turn controlled by the annual mean insolation at 30°N and the strength of the East Asian winter monsoon (EAWM). Strong insolation and weak EAWM tend to increase buoyancy gain (decrease buoyancy loss), corresponding to shallow thermocline depths, and vice versa. Regional SSS is influenced by the global ice volume, the Kuroshio Current (KC), and vertical mixing. A deep thermocline coincides with a high SSS because strong vertical mixing brings more, saltier subsurface KC water to the surface, and vice versa. Local SSS (excluding the global ice volume effect) became lower in the northern OT than in the southern OT after ~9.2 ka, implying that Changjiang diluted water had stronger influence in the northern sector. SSS show no major changes during the Bølling/Allerød and Younger Dryas events, probably because the KC disturbed the North Atlantic signals. This argues against earlier interpretations of sea surface temperature records of this core. Wavelet and spectral analyses of the Δδ18OP-G18O of P. obliquiloculata minus G. ruber s.s.) and δ18Olocal records display 1,540-, 1,480-, 1,050-, 860-, 640-, and 630-year periods. These are consistent with published evidence of a pervasive periodicity of 1,500 years in global climate as well as EAWM and KC signatures, and a fundamental solar periodicity of 1,000 years and intermediary derived periodicity of 700 years.  相似文献   
994.
Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2–1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.  相似文献   
995.
This paper presents an artificial neural network (ANN)-based response surface method that can be used to predict the failure probability of c-φ slopes with spatially variable soil. In this method, the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model; the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties; and finally, an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables. The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability. As a result, the obtained approximate function can be used as an alternative to the specific analysis process in c-φ slope reliability analyses.  相似文献   
996.
Nonlinear behaviors of a free-floating body in waves were experimentally investigated in the present study. The experiments were carried out for 6 different wave heights and 6 different wave periods to cover a relatively wide range of wave nonlinearities. A charge-coupled device (CCD) camera was used to capture the real-time motion of the floating body. The measurement data show that the sway, heave and roll motions of the floating body are all harmonic oscillations while the equilibrium position of the sway motion drifts in the wave direction. The drift speed is proportional to wave steepness when the size of the floating body is comparable to the wavelength, while it is proportional to the square of wave steepness when the floating body is relatively small. In addition, the drift motion leads to a slightly longer oscillation period of the floating body than the wave period of nonlinear wave and the discrepancy increases with the increment of wave steepness.  相似文献   
997.
This study investigates atmospheric responses to the directions of surface wind over the Kuroshio front in the East China Sea, using wintertime satellite-derived data sets. Composite maps of sea surface temperature, wind speed, precipitation, turbulent heat flux, surface wind divergence, and the curl of wind vectors above the atmospheric boundary layer are depicted based on the classification of intense northeasterly (along the front) and northwesterly (across the front) winds over the East China Sea. When northeasterly winds prevail, considerable precipitation occurs on the offshore side of the Kuroshio front, in contrast to periods when northwesterly winds prevail. First, the northeasterly winds strengthen above the front because of the downward transfer of momentum from the fast-moving air at higher levels and/or an adjustment of sea level pressure over the oceanic front, although the process by which the influence of the Kuroshio penetrates beyond the marine atmospheric boundary layer remains unclear. Second, a cyclonic vortex forms above the marine atmospheric boundary layer (at 850-hPa height) on the offshore side of the front, and thereafter, surface wind convergence via Ekman suction (hence, enhanced precipitation) occurs over the East China Sea shelf breaks. The northeasterly winds blow over the East China Sea when the Aleutian Low retreats to the east and when high sea level pressure covers the northern Sea of Japan.  相似文献   
998.
Based on the measured data in recent 20 years, the variation trends of the median grain size of the surface sediment, the sand-silt boundary and the mud area on the adjacent continental shelf of the Yangtze Estuary were analyzed in depth, and the effects of natural mechanism and human activities were discussed. The results show that:(1) In recent years(2006-2013), the median grain size of sediment and the distribution pattern of grouped sediments in the adjacent continental shelf area to the Yangtze Estuary have presented no obvious change compared with those before 2006;(2) The median diameter of the surface sediment in the continental shelf area displayed a coarsening trend with the decrease of sediment discharge from the basin and the drop in suspended sediment concentration in the shore area;(3) In 2004-2007, the sand-silt boundary in the north part(31°30′N) of the continental shelf area presented no significant changes, while that in the south part(31°30′S) moved inwards; In 2008-2013, both the sand-silt boundaries in the north and south parts of the continental shelf area moved inwards, mainly due to the fact that in the dry season, a relatively enhanced hydrodynamic force of the tides was generated in the Yangtze River, as well as a decreased suspended sediment concentration and a flow along the banks in North Jiangsu;(4) The mud area where the maximum deposition rate is found in the Yangtze Estuary, tends to shrink due to the drop in sediment discharge from the basin, and the decrease in suspended sediment concentration in the shore area and erosion in the delta. Moreover, it tended to shift to the south at the same time because the implement of the training works on the deep-water channel of the North Passage changed the split ratio between the North and South Passages with an increase in the power of the discharged runoff in the South Passage.  相似文献   
999.
Direct current measurements by a shipboard and bottom-mounted acoustic Doppler current profiler and concurrent hydrographic observations with a CTD were conducted off southeastern Hokkaido, Japan, between January and May 2005 to reveal temporal variations in the current structure and volume transport of the Coastal Oyashio (CO). The CO, which has a baroclinic jet structure with southwestward speeds exceeding 90 cm s?1 and a width of 7–8 km, was associated with a surface-to-bottom density front and was formed on the offshore side of the shelf break. The volume transport of CO (T CO) was estimated by integrating the fluxes of lower-density water that was trapped against the coast along the density front represented by the 26.2 σ θ isopycnal line. This transport decreased monotonously from 0.79 Sv (1 Sv = 106 m3 s?1) in January to 0.21 Sv in March and subsequently to 0.12 Sv in May, possibly due to the decay of the East Sakhalin Current Water in the Okhotsk Sea. Accompanied by a decrease in T CO, the location of the jet structure associated with the density front moved toward the coast while the maximum speed of the jet decreased and the tilt of the front became more horizontal. Consequently, more saline offshore Oyashio water flowed into the deep part of the shelf area, and the current structure altered from relatively barotropic in winter to baroclinic in spring. This study is the first to estimate the observed volume transport of the CO from direct current measurements.  相似文献   
1000.
Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV’s heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号