首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   6篇
  国内免费   2篇
大气科学   3篇
地球物理   43篇
地质学   73篇
海洋学   25篇
天文学   21篇
自然地理   8篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   5篇
  2011年   17篇
  2010年   7篇
  2009年   9篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
  1941年   2篇
排序方式: 共有173条查询结果,搜索用时 78 毫秒
11.
We review the presence and signatures of the non-equilibrium processes, both non-Maxwellian distributions and non-equilibrium ionization, in the solar transition region, corona, solar wind, and flares. Basic properties of the non-Maxwellian distributions are described together with their influence on the heat flux as well as on the rates of individual collisional processes and the resulting optically thin synthetic spectra. Constraints on the presence of high-energy electrons from observations are reviewed, including positive detection of non-Maxwellian distributions in the solar corona, transition region, flares, and wind. Occurrence of non-equilibrium ionization is reviewed as well, especially in connection to hydrodynamic and generalized collisional-radiative modeling. Predicted spectroscopic signatures of non-equilibrium ionization depending on the assumed plasma conditions are summarized. Finally, we discuss the future remote-sensing instrumentation that can be used for the detection of these non-equilibrium phenomena in various spectral ranges.  相似文献   
12.
13.
The Northern Apennines have been subdivided into homogeneous zones, on the basis of recent structural evolution and crustal structure, in which the earthquake distribution can find a coherent framework. These zones, whose physiography is in strict connection with their structure, are: the Internal Peri-Tyrrhenian Belt; the External or Main Belt; the Buried Belt; and the Pede-Alpine Homocline. Earthquake activity has a tendency to cluster along well-defined bands, particularly in the easternmost border of the Peri-Tyrrhenian Belt, as well as along the zone between the External Belt and the Buried Belt, i.e. along the Padanian margin of the Northern Apennines.A minimum of seismic activity seems to be correlated with some zones of the External Belt, as well as with the Late Tertiary and Quaternary magmatic province of Tyrrhenian Southern Tuscany.The fault-plane solutions are coherent with the structural picture.A tentative seismotectonic model of the Northern Apennines is discussed.  相似文献   
14.
It is shown that experimentally observed departures from Henry's law at high dilution conditions for rare earth elements (REE) in garnet, clinopyroxene and plagioclase can be referred to stabilization in the lattice point defects. The solution process involves negative interaction parameters (?500/?3,000 cal for garnet). On the basis of the experimental data, the activity coefficients of the trace REE can be approximated by a model based on trace cation/cationic vacancy binary solid solution, taking into account association phenomena between them as well.  相似文献   
15.
Fault rocks from various segments of the Periadriatic fault system (PAF; Alps) have been directly dated using texturally controlled Rb-Sr microsampling dating applied to mylonites, and both stepwise-heating and laser-ablation 40Ar/39Ar dating applied to pseudotachylytes. The new fault ages place better constraints on tectonic models proposed for the PAF, particularly in its central sector. Along the North Giudicarie fault, Oligocene (E)SE-directed thrusting (29-32 Ma) is currently best explained as accommodation across a cogenetic restraining bend within the Oligocene dextral Tonale-Pustertal fault system. In this case, the limited jump in metamorphic grade observed across the North Giudicarie fault restricts the dextral displacement along the kinematically linked Tonale fault to ~30 km. Dextral displacement between the Tonale and Pustertal faults cannot be transferred via the Peio fault because of both Late Cretaceous fault ages (74-67 Ma) and sinistral transtensive fault kinematics. In combination with other pseudotachylyte ages (62-58 Ma), widespread Late Cretaceous-Paleocene extension is established within the Austroalpine unit, coeval with sedimentation of Gosau Group sediments. Early Miocene pseudotachylyte ages (22-16 Ma) from the Tonale, Pustertal, Jaufen and Passeier faults argue for a period of enhanced fault activity contemporaneous with lateral extrusion of the Eastern Alps. This event coincides with exhumation of the Penninic units and contemporaneous sedimentation within fault-bound basins.  相似文献   
16.
Alpine deformation of Austroalpine units south of the Tauern window is dominated by two kinematic regimes. Prior to intrusion of the main Periadriatic plutons at ~30 Ma, the shear sense was sinistral in the current orientation, with a minor north-side-up component. Sinistral shearing locally overprints contact metamorphic porphyroblasts and early Periadriatic dykes. Direct Rb-Sr dating of microsampled synkinematic muscovite gave ages in the range 33-30 Ma, whereas pseudotachylyte locally crosscutting the mylonitic foliation gave an interpreted 40Ar-39Ar age of ~46 Ma. The transition from sinistral to dextral (transpressive) kinematics related to the Periadriatic fault occurred rapidly, between solidification of the earlier dykes and of the main plutons. Subsequent brittle-ductile to brittle faults are compatible with N-S to NNW-SSE shortening and orogen-parallel extension. Antithetic Riedel shears are distinguished from the previous sinistral fabric by their fine-grained quartz microstructures, with local pseudotachylyte formation. One such pseudotachylyte from Speikboden gave a 40Ar-39Ar age of 20 Ma, consistent with pseudotachylyte ages related to the Periadriatic fault. The magnitude of dextral offset on the Periadriatic fault cannot be directly estimated. However, the jump in zircon and apatite fission-track ages establishes that the relative vertical displacement was ~4-5 km since 24 Ma, and that movement continued until at least 13 Ma.  相似文献   
17.
Deformation and magmatism within the 90 km wide northern Ethiopian Rift system is concentrated along a narrow zone - the Wonji Fault Belt. Two key areas (the Nazret-Dera and Asela-Ziway areas), located along the eastern margin of the north-northeast to northeast trending Main Ethiopian Rift, have been investigated in order to reconstruct the recent tectonomagmatic evolution of the northern branch of the Main Ethiopian Rift. In these areas, Early Pleistocene volcanic products (Wonji Group) overlie Pliocene volcanic rocks (Eastern Margin Unit). Detailed stratigraphical reconstructions have revealed the presence of several tectonomagmatic units which can be correlated between the two study areas. The stratigraphical and petrological study of these units outlined (1) the bimodal composition (basalts-pantellerites) of the oldest and youngest units and the unimodal character (pantellerites) of the products erupted during the intervening period; (2) the mainly fissural origin of the ignimbrites and oldest basalts; and (3) a mafic/felsic volumetric ratio of 1:5.The geological data suggest that, around the Pliocene-Quaternary boundary, a change in the stress field occurred in this Main Ethiopian Rift sector, passing from a direction of extension roughly orthogonal to the rift shoulders, to oblique rifting related to an east-west trending extension. In this framework the change in the style of volcanism observed in the Nazret-Dera and Asela-Ziway areas can be related to the change of the stress field. A new geodynamic model is presented for the Late Pliocene to Recent evolution of this sector of the Main Ethiopian Rift. According to this model, a large volume of rhyolitic products was erupted during an oblique rifting phase, following a previous period of pure extension. The change in the tectonic regime favoured partial melting of the underplated basalts as a decrease in the pressure and an elevation of isotherms occurred.  相似文献   
18.
Considering food web energetics and elemental cycling together allows the testing of hypotheses about the coevolution of biological systems and their physical environment. We investigated the energy flow and the distribution of 25 elements in the Steina River.¶We constructed an annual energy flow network and estimated the emergy ("embodied energy" that includes all the energy involved in a process) contributions of resources sustaining the system. Furthermore, we measured the concentration of various macronutrients, essential elements, and heavy metals in the physical environment and trophic compartments. Finally, we examined the hypothesis of a positive relationship between the "rarity" of an element and its tendency to bioaccumulate. To do so, we used transformity, the relative energy input required to sustain a compartment's net production or the concentration differential of an element between the living community and the physical environment.¶The resulting energy flow network is one of the most complete available for streams. In the Steina, over 99% of the energy input is transported through the system without being processed. Dissolved inorganic matter and sunlight are the largest inputs, but uptake efficiency is much higher for dissolved and particulate organic matter. Transformities of trophic compartments and elements span 6 to 7 orders of magnitude.¶The tendency to bioaccumulate was as predicted for most elements, with macronutrients showing no accumulation and heavy elements accumulating in high-transformity compartments. However, Na and K were found at highest concentrations in consumers, and Pb, Ga, and Cd in algae. Improved estimates may become possible as more knowledge is available on ecosystem flows. We suggest further ways of testing hypotheses about strategies of element processing.  相似文献   
19.
Zusammenfassung Die Schwazer Augengneise (Kellerjoch-Gneise) und die Steinkogelschiefer wurden petrographisch und geochronologisch untersucht. Die Steinkogelschiefer und die Schwazer Augengneise zeigen eine prograde Metamorphose der Amphibolitfazies. Sie liegen auf den schwächer metamorphen Innsbrucker Quarzphylliten und unter den ebenfalls schwächer metamorphen Gesteinen der Grauwackenzone, nördlich der westlichen Hohen Tauern (Tirol, Salzburg, Österreich). Aufgrund des kombinierten Compston-Jeffery- und Nicolaysen-Diagramms ist das Sedimentationsalter des Eduktes der Steinkogelschiefer 540 Mio. Jahre. Das Alter der Platznahme des Eduktes der Schwazer Augengneise ist wahrscheinlich 425 Mio. Jahre. Eine kaledonische Metamorphose ist nicht nachweisbar.Die herzynische Metamorphose verursachte sowohl in den Schwazer Augengneisen als auch in den Steinkogelschiefern eine vollständige Sr-Homogenisierung im Gesamtgestein. Die Rb-Sr-Isochrone der Schwazer Augengneise ergibt ein Alter von 322±24 Mio. Jahren bei einem Sr87/Sr86-Isotopenverhältnis von 0.7180±0.0024. Die Rb-Sr-Isochrone der Steinkogelschiefer definiert ein Alter von 347±30 Mio. Jahren, bei einem Sr87/Sr86-Verhältnis von 0.7150±0.0021. Die herzynischen Phengite aus den Schwazer Augengneisen ergeben mit der Rb-Sr-Methode ein Abkühlungsalter von 273 bzw. 260 Mio. Jahren. Die K-Ar-Phengit- und Muscovitalter sind Mischalter, welche zwischen dem Alter der herzynischen und dem der frühalpinen Metamorphose liegen. Das frühalpine Ereignis wird durch Rb-Sr-Biotitalter um 90 Mio. Jahre erfaßt. Dieses Alter entspricht dem Zeitpunkt der Abkühlung der Gesteine unter 300 °C vor dem frühalpinen Deckenschub.Die K-Ar-Alter der Biotite sind geologisch nicht interpretierbar, da sie Ar-Überschuß zeigen.Die Überlagerung der Innsbrucker Quarzphyllite durch die Steinkogelschiefer und die Schwazer Augengneise ist wahrscheinlich das Ergebnis eines herzynischen Deckenbaus. Die Steinkogelschiefer und die Schwazer Augengneise könnten daher nicht zur mittelostalpinen Deckeneinheit gehören, sondern tektonisch gesehen, Teil des unterlagernden unterostalpinen Innsbrucker Quarzphyllites sein.
Petrology and geochronology of the Schwazer Augengneis (Kellerjochgneis) and of the Steinkogelschiefer north of the western Tauern Window have been investigated. The Steinkogelschiefer are garnet-mica schists, the Schwazer Augengneis is an orthoaugengneiss. Both rock units show a prograde metamorphism of the amphibolite facies and are interbedded between the Innsbrucker Quarzphyllite and the Grauwackenzone. The Innsbrucker Quarzphyllite and the rocks of the Grauwackenzone clearly show in respect to the Schwazer Augengneis and the rocks of the Steinkogelschiefer unit a lower metamorphic grade of the greenschist facies. From combined Compston-Jeffery- and Nicolaysen-diagrams the age of the sediments from which the mica schists of the Steinkogelschiefer unit derives is 540 m. y. The age of the intrusion of the magma from which the Schwazer orthoaugengneis later originated is probably 425 m. y. A Caledonian metamorphism could not be demonstrated by radiometry. In the Schwazer Augengneis as well as in the paragneisses of the Steinkogelschiefer unit a complete Sr-homogenisation was produced by the hercynian metamorphism. An age of 322±24 m. y. and a Sr87/Sr86-ratio of 0.7180±0.0024 result from a Rb-Sr-Isochrone of the Schwazer Augengneis. The RbSr-Isochrone of the Steinkogelschiefer defines an age of 347±30 m. y. and a Sr87/Sr86-ratio of 0.7150±0.0021. From the Rb-Sr-method a cooling age of 273 and 260 m. y. is established for the phengites from the Schwazer Augengneis.K-Ar-ages of the muscovites and of the phengites are mixed ages between the hercynian and that of the eoalpine metamorphism. The eoalpine metamorphism is dated by the Rb-Sr-age of the biotites (90 m. y.). This age corresponds to the cooling of the rocks below a temperature of 300 °C before the eoalpine nappe transport.K-Ar-ages of the biotites show excess argon and are therefore from a geological point of view meaningless. From petrological and geochronological data it cannot be demonstrated that the tectonic position of the Schwazer Augengneis and of the Steinkogelschiefer unit on the top of the Innsbrucker Quarzphyllit and under the Grauwackenzone is due to the alpine nappe transport.From a tectonic point of view, the Steinkogelschiefer and the Schwazer Augengneis therefore probably belongs to the middle austroalpine unit of the Innsbrucker Quarzphyllit.

Résumé Les gneiss oeillés de Schwaz (Kellerjochgneise) et les schistes de Steinkogel ont été étudiés par voie pétrographique et géochronologique.Tous deux montrent une métamorphose progradée du facies amphibolite. Ils reposent sur la série moins métamorphique des »Innsbrucker Quarzphyllit« et sous la Zone des grauwackes, également peu métamorphiques, au nord des »Hohe Tauern« occidentales Tyrol, Salzbourg, Autriche).Selon le diagramme combiné Compston-Jeffery et Nicolaysen l'âge de la sédimentation des schistes de Steinkogel est de 540 Mio. ans. L'âge de la sédimentation des gneiss oeillés de Schwaz est probablement 425 Mio. ans. Un métamorphisme calédonien ne peut être démontré.Le métamorphisme hercynien a causé — tant dans les gneiss oeillés de Schwaz que dans les schistes de Steinkogel — une homogénisation complète du Sic. L'isochrone RB/Sr des gneiss oeillés de Schwaz indique une âge de 322±24 Mio. ans et un rapport Sr87/Sr86 de 0.7180±0.0024.L'isochrone Rb/Sr des schistes de Steinkogel indique un âge de 347±30 Mio. et un rapport Sr87/Sr86 de 0.7150±0.0021. Les phengites hercyniennes dans les gneiss oeillés de Schwaz indiquent, selon la méthode Rb/Sr, un âge de refroidissement de 273 et 260 Mio. ans. Les âges K/Ar de la phengite et la muscovite sont des âges mixtes compris entre celui du métamorphisme hercynien et celui du métamorphisme évalpin.L'éveénement éoalpin est évalué à 90 Mio. ans (Rb/Sr-biotite). Cet âge correspond au moment du refroidissement des roches en-dessous de 300 °C avant al poussée des premières nappes alpines.Les âges K-Ar des biotites ne peuvent pas être interpretés géologiquement étant donné pu'ils montrent un excès d'Ar.Le recouvrement de l'»Innsbrucker Quarzphyllit« par les schistes de Steinkogel et les gneiss oeillés de Schwaz est probablement le résultat d'une tectonique hercynienne. Il en résulte que les schistes de Steinkogel et les gneiss oeillés de Schwaz ne pourraient pas faire partie de l'ensemble de la nappe austroalpine moyenne, mais vus tectoniquement, être une partie de la nappe austroalpine inférieure sous-jacente de l'»Innsbrucker Quarzphyllit«.

(Kellerjoch-Gneise) Steinkogel. . - — , (, , ). Comston-Jeffery Nicolaysen'a , SteinKogel'a, 540 . , , , , 425 . . . - 322±24 Sr87/Sr8b 0,7180±0,0024. Steinkogel'a 347±30 0,7150± 0,0021. - 273–260 . , -, - . , -, - 90 . 300° , - . , . . . - Steinkogel'a , , . - , , , -- .
  相似文献   
20.
In the Bijar region (Western Iran) two distinct volcanic cycles have been recognized. The first, of Upper Miocene age, consists of high-K cale-alkaline volcanic rocks interpreted as final products of the cale-alkaline Tertiary phase of central Iran. The second volcanic cycle, mostly of Pleistocene age (0.5–1.3 m.v.) consists of undersaturated, mainly potassic, alkaline products. As the lavas of this last phase are slightly fractionated, the chemical differences shown by these rocks have been interpreted as primitive features related to the physical conditions governing the partial melting in the mantle and/or the mantle heterogeneity. In a volcanic center (Sarajukh volcano) contemporaneous basic and acid magmas have been found, and interpreted as derived from two different and independent sources. The alkaline basic volcanism is considered as an expression of disjunctive processes that have affected the western margin of the Iranian plate after the Pliocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号