首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   25篇
  国内免费   1篇
测绘学   11篇
大气科学   11篇
地球物理   127篇
地质学   68篇
海洋学   37篇
天文学   4篇
综合类   3篇
自然地理   7篇
  2022年   1篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2017年   9篇
  2016年   11篇
  2015年   16篇
  2014年   15篇
  2013年   19篇
  2012年   15篇
  2011年   22篇
  2010年   20篇
  2009年   20篇
  2008年   20篇
  2007年   7篇
  2006年   12篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   10篇
  2001年   1篇
  2000年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有268条查询结果,搜索用时 156 毫秒
31.
32.
Effects of rapidly changing ionospheric weather are critical in high accuracy positioning, navigation, and communication applications. A system used to construct the global total electron content (TEC) distribution for monitoring the ionospheric weather in near-real time is needed in the modern society. Here we build the TEC map named Taiwan Ionosphere Group for Education and Research (TIGER) Global Ionospheric Map (GIM) from observations of ground-based GNSS receivers and space-based FORMOSAT-3/COSMIC (F3/C) GPS radio occultation observations using the spherical harmonic expansion and Kalman filter update formula. The TIGER GIM (TGIM) will be published in near-real time of 4-h delay with a spatial resolution of 2.5° in latitude and 5° in longitude and a high temporal resolution of every 5 min. The F3/C TEC results in an improvement on the GIM of about 15.5%, especially over the ocean areas. The TGIM highly correlates with the GIMs published by other international organizations. Therefore, the routinely published TGIM in near-real time is not only for communication, positioning, and navigation applications but also for monitoring and scientific study of ionospheric weathers, such as magnetic storms and seismo-ionospheric anomalies.  相似文献   
33.
We report on the FormoSat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) limb-viewing observations of GPS L-band scintillations since mid-2006 and propose to study global F-layer irregularity morphology. The FS3/COSMIC has generally performed more than 1000 ionospheric radio occultation (RO) observations per day. We reprocess 1-Hz amplitude data and obtain complete limb-viewing profiles of the undersampling (sampling frequency lower than Fresnel frequency) S4 scintillation index from about 80% of the RO observations. There are a few percent of FS3/COSMIC RO observations having greater than 0.09 undersampling S4max values on average. However, seven identified areas, Central Pacific Area (?20° to 20° dip latitude, 160°E–130°W), South American Area (?20° to 20° dip latitude, 100°W–30°W), African Area (?20° to 20° dip latitude, 30°W–50°E), European Area (30°–55°N, 0°–55°E), Japan Sea Area (35°–55°N, 120°–150°E), Arctic Area (>65° dip latitude), and Antarctic Area (<?65° dip latitude), have been designated to have a much higher percentage of strong limb-viewing L-band scintillations. During the years in most of the last sunspot cycle from mid-2006 to the end 2014, the scintillation climatology, namely, its variations with each identified area, season, local time, magnetic activity, and solar activity, have been documented.  相似文献   
34.
An objective technique to detect and predict intensity bifurcation situations in a five-day Weighted Analog Intensity forecast technique for the western North Pacific (WAIP) has been extended to seven days. A hierarchical cluster analysis is applied to the N analog intensities to separate them into two clusters, which are considered to represent a substantial intensity bifurcation if a threshold maximum velocity difference of 15 kt is satisfied. Two important modifications have been made to develop the bifurcation version for seven-day WAIP forecasts. First, the number of track analogs has been increased from 10 analogs to 16 analogs, which results in larger sample sizes and better performance. Second, separate intensity bias corrections are calculated for the two cluster WAIP forecasts rather than using the same 16-analog intensity bias correction. If an always perfect selection of the correct cluster WAIP forecast of each bifurcation situation is made, a substantial improvement in the intensity mean absolute errors is achieved relative to the original WAIP forecasts based on all 16 of the best analogs. These perfect-cluster selection WAIP forecasts have smaller bias errors and are more highly correlated with the verifying intensities at all forecast intervals through 168 h. Furthermore, the Probability of Detection is improved for the perfect-cluster selection and more realistic intensity spreads are specified. A simple guidance-on-guidance technique is demonstrated to assist the forecasters in selecting the correct WAIP cluster forecast in bifurcation situations.  相似文献   
35.
Several recent studies have presented evidence that significant induced earthquakes occurred in a number of oil-producing regions during the early and mid-twentieth century related to either production or wastewater injection. We consider whether the 21 July 1952 Mw 7.5 Kern County earthquake might have been induced by production in the Wheeler Ridge oil field. The mainshock, which was not preceded by any significant foreshocks, occurred 98 days after the initial production of oil in Eocene strata at depths reaching 3 km, within ~1 km of the White Wolf fault (WWF). Based on this spatial and temporal proximity, we explore a potential causal relationship between the earthquake and oil production. While production would have normally be expected to have reduced pore pressure, inhibiting failure on the WWF, we present an analytical model based on industry stratigraphic data and best estimates of parameters whereby an impermeable splay fault adjacent to the main WWF could plausibly have blocked direct pore pressure effects, allowing the poroelastic stress change associated with production to destabilize the WWF, promoting initial failure. This proof-of-concept model can also account for the 98-day delay between the onset of production and the earthquake. While the earthquake clearly released stored tectonic stress, any initial perturbation on or near a major fault system can trigger a larger rupture. Our proposed mechanism provides an explanation for why significant earthquakes are not commonly induced by production in proximity to major faults.  相似文献   
36.
Steel box columns are widely used in steel building structures in Taiwan due to their dual strong axes. To transfer the beam-end moment to the column, diaphragm plates of the same thickness and elevations as the beam flanges are usually welded inside the box column. The electro-slag welding (ESW) process is widely used to connect the diaphragms to the column flanges in Taiwan because of its convenience and efficiency. However, ESW may increase the hardness of the welds and heat-affected zones (HAZs), while reducing the Charpy-V notch strength in the HAZ. This situation can cause premature fracture of the diaphragm-to-column flange welds before a large plastic rotation is developed in the beam-to-box column joints. To quantify the critical eccentricity and the effectiveness of fracture prediction, this study uses fracture prediction models and finite element model (FEM) analysis to correlate the test results. In this study, two beam-to-box column connection subassembly tests are conducted with different loading protocols and ESW chamber shapes. To implement a fracture prediction model, the material parameters are established from circumferential notched tensile tests and FEM analysis. Test results indicate that the fracture instances can be predicted on the basis of the cumulative plastic deformation in the HAZs. Analytical results indicate that fracture instances and locations are sensitive to the relative locations of the ESW joints and beam flange. Tests also confirm that the possible fracture of the diaphragm-to-column flange joints can be mitigated by enlarging the chamber of the ESW joint.  相似文献   
37.
We propose a physical model for the high-frequency (>1 Hz) spectral distribution of seismic power generated by debris flows. The modeled debris flow is assumed to have four regions where the impact rate and impulses are controlled by different mechanisms: the flow body, a coarser-grained snout, a snout lip where particles fall from the snout on the bed, and a dilute front composed of saltating particles. We calculate the seismic power produced by this impact model in two end-member scenarios, a thin-flow and thick-flow limit, which assume that the ratio of grain sizes to flow thicknesses are either near unity or much less than unity. The thin-flow limit is more appropriate for boulder-rich flows that are most likely to generate large seismic signals. As a flow passes a seismic station, the rise phase of the seismic amplitude is generated primarily by the snout while the decay phase is generated first by the snout and then the main flow body. The lip and saltating front generate a negligible seismic signal. When ground properties are known, seismic power depends most strongly on both particle diameter and average flow speed cubed, and also depends on length and width of the flow. The effective particle diameter for producing seismic power is substantially higher than the median grain size and close to the 73rd percentile for a realistic grain size distribution. We discuss how the model can be used to estimate effective particle diameter and average flow speed from an integrated measure of seismic power. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
38.
A thin‐profile buckling‐restrained brace (thin‐BRB) consists of a rectangular steel casing and a flat steel core that is parallel to a gusset plate. A thin configuration reduces the width of the restraining member and thus saves usable space in buildings. However, deformable debonding layers, which cover the steel core plate in order to mitigate the difference between the peak tensile and compressive axial forces, provide a space for the steel core to form high mode buckling waves when the thin‐BRB is under compression. The wave crests squeeze the debonding layers and produce outward forces on the inner surface of the restraining member. If the restraining member is too weak in sustaining the outward forces, local bulging failure occurs and the thin‐BRB loses its compression capacity immediately. In order to investigate local bulging behavior, a total of 22 thin‐BRB specimens with a ratio of steel core plate to restraining steel tube depth ranging from 0.3 to 0.7 and axial yield force capacities ranging from 421 kN to 3036 kN were tested by applying either cyclically increasing, decreasing, or constant axial strains. The restraining steel tube widths of all the specimens were smaller than 200 mm and were infilled with mortar with a compressive strength of 97 MPa or 55 MPa. Thirteen of the 22 thin‐BRB specimens' restraining members bulged out when the compressive core strains exceeded 0.03. A seismic design method of the thin‐BRB in preventing local bulging failure is proposed in this study. Test and finite element model (FEM) analysis results suggest that the outward forces can be estimated according to the BRB compressive strength, steel core high mode buckling wavelength, and the debonding layer thickness. In addition, the capacity of the restraining member in resisting the outward forces can be estimated by using the upper bound theory in plastic analysis. Both the FEM analysis and test results indicate that the proposed method is effective in predicting the possibility of local bulging failure. Test results indicate that the proposed design method is conservative for thin‐BRB specimens with a large steel core plate to restraining steel tube depth ratio. This paper concludes with design recommendations for thin‐BRBs for severe seismic services. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
39.
Groundwater prediction models are subjected to various sources of uncertainty. This study introduces a hierarchical Bayesian model averaging (HBMA) method to segregate and prioritize sources of uncertainty in a hierarchical structure and conduct BMA for concentration prediction. A BMA tree of models is developed to understand the impact of individual sources of uncertainty and uncertainty propagation to model predictions. HBMA evaluates the relative importance of different modeling propositions at each level in the BMA tree of model weights. The HBMA method is applied to chloride concentration prediction for the “1,500‐foot” sand of the Baton Rouge area, Louisiana from 2005 to 2029. The groundwater head data from 1990 to 2004 is used for model calibration. Four sources of uncertainty are considered and resulted in 180 flow and transport models for concentration prediction. The results show that prediction variances of concentration from uncertain model elements are much higher than the prediction variance from uncertain model parameters. The HBMA method is able to quantify the contributions of individual sources of uncertainty to the total uncertainty.  相似文献   
40.
Previous research has shown that self‐centering steel plate shear walls (SC‐SPSWs) are capable of achieving enhanced seismic performance at multiple hazard levels, including recentering following design‐level earthquakes. When modeling SC‐SPSWs numerically, these studies considered an idealized tension‐only steel plate shear wall (SPSW) web plate behavior. Research has shown that web plate behavior is more complex than predicted by the idealized model, and web plates can provide more strength, stiffness, and energy dissipation than predicted by the idealized model. The idealized model of web plate behavior is used widely in SPSW numerical models where the moment‐resisting boundary frame provides supplemental hysteretic damping and stiffness; however, in SC‐SPSWs, where the post‐tensioned boundary frame is designed to remain elastic during an earthquake, accounting for the more complex web plate behavior can have a significant impact on seismic performance estimates from numerical simulation. This paper presents different methods for modeling SC‐SPSWs. Responses from these models are compared with experimental results. A simple modification of the tension‐only model, referred to as the tension‐compression strip model, is shown to provide a reasonable approximation of SC‐SPSW behavior. Results from nonlinear response history analyses of SC‐SPSWs with the tension‐only and tension‐compression web plate models are compared to assess how the approximation of web plate behavior affects SC‐SPSW seismic performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号