首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2178篇
  免费   73篇
  国内免费   17篇
测绘学   39篇
大气科学   175篇
地球物理   468篇
地质学   795篇
海洋学   163篇
天文学   396篇
综合类   7篇
自然地理   225篇
  2023年   10篇
  2021年   25篇
  2020年   32篇
  2019年   24篇
  2018年   47篇
  2017年   32篇
  2016年   54篇
  2015年   47篇
  2014年   49篇
  2013年   132篇
  2012年   60篇
  2011年   104篇
  2010年   96篇
  2009年   116篇
  2008年   113篇
  2007年   82篇
  2006年   89篇
  2005年   79篇
  2004年   83篇
  2003年   82篇
  2002年   84篇
  2001年   53篇
  2000年   53篇
  1999年   54篇
  1998年   55篇
  1997年   31篇
  1996年   22篇
  1995年   27篇
  1994年   29篇
  1993年   33篇
  1992年   22篇
  1991年   23篇
  1990年   26篇
  1989年   31篇
  1988年   14篇
  1987年   17篇
  1986年   16篇
  1985年   28篇
  1984年   34篇
  1983年   34篇
  1982年   27篇
  1981年   35篇
  1980年   26篇
  1979年   20篇
  1978年   13篇
  1977年   14篇
  1976年   12篇
  1975年   11篇
  1974年   17篇
  1973年   11篇
排序方式: 共有2268条查询结果,搜索用时 78 毫秒
961.
The Precambrian–Cambrian boundary is iconic, marking the first appearance of shelly fauna in the fossil record, and opening the Phanerozoic Eon. In England and Wales, the transition from predominantly Precambrian igneous rocks to Cambrian sedimentary strata is generally unconformable. An exceptional exposure of this transition can be observed in the Ercall Quarries in Shropshire, a classic locality in all senses of the word.  相似文献   
962.
963.
964.
This paper replies to TE Baldock's discussion [Coastal Eng. 56 (2009) 380–381] of ‘Measurement of wave-by-wave bed-levels in the swash zone’ by Turner et al. [Coastal Eng. 55 (2008) 1237–1242]. We address and extend the comparison and discussion of ultrasonic bed-level sensors and buried pressure transducers to obtain estimates of the beach face elevation within the swash zone. We demonstrate the use of the former method to obtain many and continuous (every time the beach face is exposed) in-situ estimates of net sediment flux per swash.  相似文献   
965.
In the present study, we have investigated the conditions influencing encystment and excystment in the dinoflagellate Gyrodinium instriatum under laboratory conditions. We incubated G. instriatum in modified whole SWM-3 culture medium and in versions of modified SWM-3 from which NO3 , PO4 3−, NO3 + PO4 3−, or Si had been omitted and observed encystment. Percentage encystment was high in the media without N and without P, while the percentage encystment in the medium lacking both N and P was highest. Moreover, to investigate N or P concentration which induced the encystment, Gyrodinium instriatum was also incubated in media with different concentrations of inorganic N and P; the concentrations of NO2 + NO3 and PO4 3− were measured over time. The precursors of cysts appeared within 2 or 3 days of a decrease in NO2 + NO3 or PO4 3− concentration to values lower than 1 μM or 0.2 μM, respectively. When cysts produced in the laboratory were incubated, we observed excystment after 8–37 days, without a mandatory period of darkness or low temperature. We incubated cysts collected from nature at different temperatures or in the dark or light and observed excystments. Natural cysts excysted at temperatures from 10 to 30°C, in both light and dark, but excystment was delayed at low temperatures. These studies indicate that G. instriatum encysts in low N or P concentration and excysts over a wide temperature range, regardless of light conditions, after short dormancy periods.  相似文献   
966.
A technique is described to observe and quantify wave-by-wave bed-level changes in the swash zone. The ultrasonic instrument system is non-contact with the beach face surface being measured and the sensors remain outside of the fluid flows causing sediment movement. Sensor resolution combined with the electronic noise inherent within a digital network data-logging system results in a (conservative) measurement accuracy of ± 1 mm, equating to a couple of sand grain diameters in height. Illustrative field results demonstrate the practical use of the instrumentation, and a simple data pre-processing method to separate swashes and intervening bed-level ‘events’ is discussed. These example data reveal rather complex fluctuations of the bed observed over time periods of minutes to hours. Rather strikingly, gross bed-level changes per wave are revealed to be up to many orders of magnitude larger than the observed net rate of beach face evolution. It is outlined how observations of successive bed-level changes at multiple locations within a dense grid, combined with a consideration of sediment continuity, will now enable the total net sediment transported per uprush–backwash to be quantified.  相似文献   
967.
Sediment fingerprinting has been widely used to distinguish discrete sediment sources; however, application to intra-storm sediment source variability has received relatively little focus despite the benefit being long recognized. In this investigation, sediment fingerprinting was applied to a 53-hr storm event sampled hourly to determine sediment source dynamics throughout the event. Sediment sources were differentiated using 16 variables, and source contribution determined using Bayesian and Frequentist mixing models for comparison. Both models provided comparable source predictions for the dominant source estimates and the general temporal pattern. The Frequentist model appeared to exhibit some unreliable values coinciding with low GOF and attributed to inherent model structure. The Bayesian model showed higher uncertainty, likely due to the “process error” utilized associated with single sample mixtures. High variability in sediment source contribution was observed between hourly time steps; however, local smoothing reveals temporal trends during the event. A higher average proportion of mudstone is found in the falling limb (0.544) compared with the rising limb (0.464), and the reverse is observed for mountain range (0.218 vs. 0.283) and unconsolidated (0.073 vs. 0.055). In the initial hours of the storm, mudstone source contribution significantly drops, whereas mountain range and unconsolidated contributions peak. The SSC-Q clockwise hysteresis indicates proximal sediment sources, suggesting the mudstone sediment is stored channel sediment and easily entrained. This sediment flushes through, coinciding with a drop as the distal mountain range and unconsolidated sources arrive to peak contribution. The wider Manawatū discharge and sediment load then arrive, delivering increasing levels of mudstone throughout the remainder of the event while mountain range sediment diminishes. Spatial representation of the sediment source contribution was derived from distributing sediment source loads to the spatial extent of the source material according to sub-catchment sediment loads and was weighted according to slope. This provided an effective means to visualize the origin of the sediment and a better spatial interpretation of sediment fingerprinting results, which is typically limited by poor spatial resolution.  相似文献   
968.
We present in this study the effects of short‐term heating on organics in the Tagish Lake meteorite and how the difference in the heating conditions can modify the organic matter (OM) in a way that complicates the interpretation of a parent body's heating extent with common cosmothermometers. The kinetics of short‐term heating and its influence on the organic structure are not well understood, and any study of OM is further complicated by the complex alteration processes of the thermally metamorphosed carbonaceous chondrites—potential analogues of the target asteroid Ryugu of the Hayabusa2 mission—which had experienced posthydration, short‐duration local heating. In an attempt to understand the effects of short‐term heating on chondritic OM, we investigated the change in the OM contents of the experimentally heated Tagish Lake meteorite samples using Raman spectroscopy, scanning transmission X‐ray microscopy utilizing X‐ray absorption near edge structure spectroscopy, and ultraperformance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry. Our experiment suggests that graphitization of OM did not take place despite the samples being heated to 900 °C for 96 h, as the OM maturity trend was influenced by the heating conditions, kinetics, and the nature of the OM precursor, such as the presence of abundant oxygenated moieties. Although both the intensity of the 1s?σ* exciton cannot be used to accurately interpret the peak metamorphic temperature of the experimentally heated Tagish Lake sample, the Raman graphite band widths of the heated products significantly differ from that of chondritic OM modified by long‐term internal heating.  相似文献   
969.
Stochastic weather generators have evolved as tools for creating long time series of synthetic meteorological data at a site for risk assessments in hydrologic and agricultural applications. Recently, their use has been extended as downscaling tools for climate change impact assessments. Non‐parametric weather generators, which typically use a K‐nearest neighbour (K‐NN) resampling approach, require no statistical assumptions about probability distributions of variables and can be easily applied for multi‐site use. Two characteristics of traditional K‐NN models result from resampling daily values: (1) temporal correlation structure of daily temperatures may be lost, and (2) no values less than or exceeding historical observations can be simulated. Temporal correlation in simulated temperature data is important for hydrologic applications. Temperature is a major driver of many processes within the hydrologic cycle (for example, evaporation, snow melt, etc.) that may affect flood levels. As such, a new methodology for simulation of climate data using the K‐NN approach is presented (named KnnCAD Version 4). A block resampling scheme is introduced along with perturbation of the reshuffled daily temperature data to create 675 years of synthetic historical daily temperatures for the Upper Thames River basin in Ontario, Canada. The updated KnnCAD model is shown to adequately reproduce observed monthly temperature characteristics as well as temporal and spatial correlations while simulating reasonable values which can exceed the range of observations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
970.
The evolution and dynamics of the last British–Irish Ice Sheet (BIIS) have hitherto largely been reconstructed from onshore and shallow marine glacial geological and geomorphological data. This reconstruction has been problematic because these sequences and data are spatially and temporally incomplete and fragmentary. In order to enhance BIIS reconstruction, we present a compilation of new and previously published ice-rafted detritus (IRD) flux and concentration data from high-resolution sediment cores recovered from the NE Atlantic deep-sea continental slope adjacent to the last BIIS. These cores are situated adjacent to the full latitudinal extent of the last BIIS and cover Marine Isotope Stages (MIS) 2 and 3. Age models are based on radiocarbon dating and graphical tuning of abundances of the polar planktonic foraminifera Neogloboquadrina pachyderma sinistral (% Nps) to the Greenland GISP2 ice core record. Multiple IRD fingerprinting techniques indicate that, at the selected locations, most IRD are sourced from adjacent BIIS ice streams except in the centre of Heinrich (H) layers in which IRD shows a prominent Laurentide Ice Sheet provenance. IRD flux data are interpreted with reference to a conceptual model explaining the relations between flux, North Atlantic hydrography and ice dynamics. Both positive and rapid negative mass balance can cause increases, and prominent peaks, in IRD flux. First-order interpretation of the IRD record indicates the timing of the presence of the BIIS with an actively calving marine margin. The records show a coherent latitudinal, but partly phased, signal during MIS 3 and 2. Published data indicate that the last BIIS initiated during the MIS 5/4 cooling transition; renewed growth just before H5 (46 ka) was succeeded by very strong millennial-scale variability apparently corresponding with Dansgaard–Oeschger (DO) cycles closely coupled to millennial-scale climate variability in the North Atlantic region involving latitudinal migration of the North Atlantic Polar Front. This indicates that the previously defined “precursor events” are not uniquely associated with H events but are part of the millennial-scale variability. Major growth of the ice sheet occurred after 29 ka with the Barra Ice Stream attaining a shelf-edge position and generating turbiditic flows on the Barra–Donegal Fan at ~27 ka. The ice sheet reached its maximum extent at H2 (24 ka), earlier than interpreted in previous studies. Rapid retreat, initially characterised by peak IRD flux, during Greenland Interstadial 2 (23 ka) was followed by readvance between 22 and 16 ka. Readvance during H1 was only characterised by BIIS ice streams draining central dome(s) of the ice sheet, and was followed by rapid deglaciation and ice exhaustion. The evidence for a calving margin and IRD supply from the BIIS during Greenland Stadial 1 (Younger Dryas event) is equivocal. The timing of the initiation, maximum extent, deglacial and readvance phases of the BIIS interpreted from the IRD flux record is strongly supported by recent independent data from both the Irish Sea and North Sea sectors of the ice sheet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号