首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   3篇
测绘学   2篇
大气科学   6篇
地球物理   23篇
地质学   25篇
海洋学   9篇
天文学   3篇
自然地理   4篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   1篇
  2011年   8篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1992年   1篇
  1983年   1篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
61.
Understanding sediment sorting and bedding dynamics has high value to unravelling the mechanisms underlying geomorphological, geological, ecological and environmental imprints of tidal wetlands and hence to predicting their future changes. Using the Nanhui tidal flat on the Changjiang (Yangtze) Delta, China, as a reference site, this study establishes a schematized morphodynamic model coupling flow, sediment dynamics and bed level change to explore the processes that govern sediment sorting and bedding phenomena. Model results indicate an overall agreement with field data in terms of tidal current velocities, suspended sediment concentrations (SSCs), deposition thicknesses and sedimentary structures. Depending on the variation of tidal current strength, sand-dominated layers (SDLs) and mud-dominated layers (MDLs) tend to form during spring and neap tides, respectively. Thinner tidal couplets are developed during daily scale flood–ebb variations. A larger tidal level variation during a spring–neap tidal cycle, associated with a stronger tidal current variation, favours the formation of SDLs and tidal couplets. A larger boundary sediment supply generally promotes the formation of tidal bedding, though the bedding detail is partially dependent on the SSC composition of different sediment types. Sediment properties, including for example grain size and settling velocity, are also found to influence sediment sorting and bedding characteristics. In particular, finer and coarser sediment respond differently to spring and neap tides. During neap tides, relatively small flow velocities favour the deposition of finer sediment, with limited coarser sediment being transported to the upper tidal flat because of the larger settling velocity. During spring tides, larger flow velocities transport more coarser sediment to the upper tidal flat, accounting for distinct lamination formation. Model results are qualitatively consistent with field observations, but the role of waves, biological processes and alongshore currents needs to be included in further studies to establish a more complete understanding.  相似文献   
62.
A main limitation of pixel-based vegetation indices or reflectance values for estimating above-ground biomass is that they do not consider the mixed spectral components on the earth's surface covered by a pixel. In this research, we decomposed mixed reflectance in each pixel before developing models to achieve higher accuracy in above-ground biomass estimation. Spectral mixture analysis was applied to decompose the mixed spectral components of Landsat-7 ETM+ imagery into fractional images. Afterwards, regression models were developed by integrating training data and fraction images. The results showed that the spectral mixture analysis improved the accuracy of biomass estimation of Dipterocarp forests. When applied to the independent validation data set, the model based on the vegetation fraction reduced 5–16% the root mean square error compared to the models using a single band 4 or 5, multiple bands 4, 5, 7 and all non-thermal bands of Landsat ETM+.  相似文献   
63.
Increased interest in using bivalve cultivation to mitigate eutrophication requires a comprehensive understanding of the net carbon (C) and nitrogen (N) budgets associated with cultivation on an ecosystem scale. This study quantified C and N processes related to clam (Mercenaria mercenaria) aquaculture in a shallow coastal environment (Cherrystone Inlet, VA) where the industry has rapidly increased. Clam physiological rates were compared with basin-wide ecosystem fluxes including primary production, benthic nutrient regeneration, and respiration. Although clam beds occupy only 3 % of the ecosystem’s surface area, clams filtered 7–44 % of the system’s volume daily, consumed an annual average of 103 % of the phytoplankton production, creating a large flux of particulate C and N to the sediments. Annually, N regenerated and C respired by clam and microbial metabolism in clam beds were ~3- and ~1.5-fold higher, respectively, than N and C removed through harvest. Due to the short water residence time, the low watershed load, and the close vicinity of clam beds to the mouth of Cherrystone Inlet, cultivated clams are likely subsidized by phytoplankton from the Chesapeake Bay. Consequently, much of the N released by mineralization associated with clam cultivation is “new” N as it would not be present in the system without bivalve facilitation. Macroalgae that are fueled by the enhanced N regeneration from clams represents a eutrophying process resulting from aquaculture. This synthesis demonstrates the importance of considering impacts of bivalve aquaculture in an ecosystem context especially relative to the potential of bivalves to remove nutrients and enhance C sinks.  相似文献   
64.
Natural Hazards - In October 2015, heavy rains brought by Typhoon Koppu generated landslides and debris flows in the municipalities of Bongabon, Laur, and Gabaldon in Nueva Ecija province....  相似文献   
65.
We present results of petrographic, mineralogical, and chemical investigations of three Chelyabinsk meteorite fragments. Three distinct lithologies were identified: light S3 LL5, dark S4–S5 LL5 material, and opaque fine-grained former impact melt. Olivine–spinel thermometry revealed an equilibration temperature of 703 ± 23 °C for the light lithology. All plagioclase seems to be secondary, showing neither shock-induced fractures nor sulfide-metal veinlets. Feldspathic glass can be observed showing features of extensive melting and, in the dark lithology, as maskelynite, lacking melt features and retaining grain boundaries of former plagioclase. Olivine of the dark lithology shows planar deformation features. Impact melt is dominated by Mg-rich olivine and resembles whole-rock melt. Melt veins (<2 mm) are connected to narrower veinlets. Melt vein textures are similar to pegmatite textures showing chilled margins, a zone of inward-grown elongated crystals and central vugs, suggesting crystallization from supercooled melt. Sulfide-metal droplets indicate liquid immiscibility of both silicate and sulfide as well as sulfide and metal melts. Impact melting may have been an important factor for differentiation of primitive planetary bodies. Graphite associated with micrometer-sized melt inclusions in primary olivine was detected by Raman mapping. Carbon isotopic studies of graphite could be applied to test a possible presolar origin.  相似文献   
66.
The neighboring coastal plain estuaries of the Elbe and Weser Rivers in Northern Germany exhibit pronounced estuarine turbidity maxima (ETM). Common features and differences between the longitudinal distributions of salinity and suspended particulate matter (SPM) in both estuaries are compared as well as the mechanisms effecting them. Monthly transects of the near surface SPM indicate that the long-term variability of salinity and the ETM is mainly influenced by the freshwater runoff. The variability is reduced to certain characteristic patterns by application of Empirical Orthogonal Functions analysis. The coefficients of these patterns are then correlated to runoff and the resulting functional regressions are used for the construction of a statistical model for the distribution of salinity and SPM along the estuaries; for SPM this has not been successful.  相似文献   
67.
A model is presented that simulates the formation of marine aggregates from particles of different origin inside a model of pelagic biological processes. Experiments are carried out with parameterizations appropriate for different types of aggregates, using different kinds of physical forcing, and compared to observations of dissolved inorganic nitrogen (DIN), particulate organic nitrogen (PON), marine snow concentration, and sedimentation.The occurrence of large, macroscopically visible aggregates (marine snow) can best be simulated with parameterizations that have been derived from in situ observations of marine snow, but not with a parameterization sufficient for dense particles. The parameterization strongly determines the amount and timing of deep export, as well as the post-bloom development of the food web in the upper layers.Detritus in aggregates plays a role mainly during times when zooplankton are abundant, as e.g. in the western Arabian Sea during Southwest Monsoon. Then the large aggregates as fast sinking vehicles may remove detritus quickly from shallow and mid-water depth, preventing the accumulation of nutrients that are produced via detritus decomposition. In this region, detritus contributes strongly to deep sedimentation. The nitrogen budget at this location with regard to the observations cannot be closed: depending on model type, either the model simulates too high sedimentation, or too high DIN. Possible causes for this mismatch include undercollection by sediment traps, inaccurate representation of physical processes in the model and the neglect of biological processes, such as production of dissolved organic matter or denitrification.  相似文献   
68.
69.
Coastal barriers are ubiquitous globally and provide a vital protective role to valuable landforms, habitats and communities located to landward. They are, however, vulnerable to extreme water levels and storm wave impacts. A detailed record of sub‐annual to annual; decadal; and centennial rates of shoreline retreat in frontages characterized by both high (> 3 m) and low (< 1 m) dunes is established for a barrier island on the UK east coast. For four storms (2006–2013) we match still water levels and peak significant wave heights against shoreline change at high levels of spatial densification. The results suggest that, at least in the short‐term, shoreline retreat, of typically 5–8 m, is primarily driven by individual events, separated by varying periods of barrier stasis. Over decadal timescales, significant inter‐decadal changes can be seen in both barrier onshore retreat rates and in barrier extension rates alongshore. Whilst the alongshore variability in barrier migration seen in the short‐term remains at the decadal scale, shoreline change at the centennial stage shows little alongshore variability between a region of barrier retreat (at 1.15 m a?1) and one of barrier extension. A data‐mining approach, synchronizing all the variables that drive shoreline change (still water level, timing of high spring tides and peak significant wave heights), is an essential requirement for validating models that predict future shoreline responses under changing sea level and storminess. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
70.
Tidal freshwater marshes are diverse habitats that differ both within and between marshes in terms of plant community composition, sediment type, marsh elevation, and nutrient status. Because our knowledge of the nitrogen (N) biogeochemistry of tidal freshwater systems is limited, it is difficult to assess how these marshes will respond to long-term progressive nutrient loading due to watershed development and urbanization. We present a process-based mass balance model of N cycling in Sweet Hall marsh, a pristine (i.e., low nutrient)Peltandra virginica-Pontederia cordata dominated tidal freshwater marsh in the York River estuary, Virginia. The model, which was based on a combination of field and literature data, revealed that N cycling in the system was largely conservative. The mineralization of organic N to NH4 + provided almost twice as much inorganic N as was needed to support marsh macrophyte and benthic microalgal primary production. Efficient utilization of porewater NH4 + by nitrifiers and other microbes resulted in low rates of tidal NH4 + export from the marsh and little accumulation of NH4 + in marsh porewaters. Inputs of N from the estuary and atmosphere were not critical in supporting marsh primary production, and served to balance N losses due to denitrification and burial. A comparison of these results with the literature suggests that the relative importance of tidal freshwater marsh N cycling processes, including plant productivity, organic matter mineralization, microbial immobilization, and coupled nitrification-denitrification, are largely independent of small changes in water column N loading. Although very high (millimolar) concentrations of dissolved inorganic N can affect processes including denitrification and plant productivity, the factors that cause the switch from efficient N recycling to a more open N cycle have not yet been identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号