首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   9篇
测绘学   9篇
大气科学   27篇
地球物理   176篇
地质学   76篇
海洋学   10篇
天文学   53篇
综合类   1篇
自然地理   28篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   11篇
  2014年   17篇
  2013年   13篇
  2012年   13篇
  2011年   19篇
  2010年   17篇
  2009年   20篇
  2008年   12篇
  2007年   12篇
  2005年   4篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   10篇
  2000年   12篇
  1999年   7篇
  1998年   3篇
  1997年   8篇
  1996年   3篇
  1993年   5篇
  1992年   9篇
  1990年   5篇
  1989年   3篇
  1987年   6篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1977年   3篇
  1976年   4篇
  1975年   4篇
  1973年   3篇
  1971年   4篇
  1970年   6篇
  1969年   3篇
  1968年   6篇
  1967年   3篇
  1966年   5篇
  1965年   3篇
  1963年   3篇
  1960年   5篇
  1959年   6篇
  1958年   5篇
  1957年   3篇
  1954年   3篇
排序方式: 共有380条查询结果,搜索用时 31 毫秒
41.
42.
Summary A profile model of electric resistivity as a function of depth was compiled, the initial parameters being the values of the electric resistivity determined experimentally for basaltic and eclogitic rocks from the Bohemian Massif. The curves of the apparent resistivity were computed for this model and the measure of information evaluated for the various model layers. The dominant influence of the subsurface layer was proved.  相似文献   
43.
¶rt;m uu nau mu m a nu a¶rt;u ¶rt; D-amu u. a¶rt; m nu u u. u¶rt;a a a mu nma u nma mu m (20 ¶rt; 150 ).  相似文献   
44.
45.
46.
Summary As a result of investigating the energy flow, transmitted by short-period HM waves, the existence of a frequency limitation was found at the theoretical investigation of the propagation of these HM waves.  相似文献   
47.
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics.  相似文献   
48.
We apply a multivariate statistical method to Titan data acquired by different instruments onboard the Cassini spacecraft. We have searched through Cassini/VIMS hyperspectral cubes, selecting those data with convenient viewing geometry and that overlap with Cassini/RADAR scatterometry footprints with a comparable spatial resolution. We look for correlations between the infrared and microwave ranges the two instruments cover. Where found, the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for incidence angle, and the calibrated antenna temperature measured along with the scatterometry echoes, are combined with the infrared reflectances, with estimated errors, to produce an aggregate data set, that we process using a multivariate classification method to identify homogeneous taxonomic units in the multivariate space of the samples.In medium resolution data (from 20 to 100 km/pixel), sampling relatively large portions of the satellite’s surface, we find regional geophysical units matching both the major dark and bright features seen in the optical mosaic. Given the VIMS cubes and RADAR scatterometer passes considered in this work, the largest homogeneous type is associated with the dark equatorial basins, showing similar characteristics as each other on the basis of all the considered parameters.On the other hand, the major bright features seen in these data generally do not show the same characteristics as each other. Xanadu, the largest continental feature, is as bright as the other equatorial bright features, while showing the highest backscattering coefficient of the entire satellite. Tsegihi is very bright at 5 μm but it shows a low backscattering coefficient, so it could have a low roughness on a regional scale and/or a different composition. Another well-defined region, located southwest of Xanadu beyond the Tui Regio, seems to be detached from the surrounding terrains, being bright at 2.69, 2.78 and 5 μm but having a low radar brightness. In this way, other units can be found that show correlations or anti-correlations between the scatterometric response and the spectrophotometric behavior, not evident from the optical remote sensing data.  相似文献   
49.
Previous geochemical and microbiological studies in the Cariaco Basin indicate intense elemental cycling and a dynamic microbial loop near the oxic-anoxic interface. We obtained detailed distributions of sulfur isotopes of total dissolved sulfide and sulfate as part of the on-going CARIACO time series project to explore the critical pathways at the level of individual sulfur species. Isotopic patterns of sulfate (δ34SSO4) and sulfide (δ34SH2S) were similar to trends observed in the Black Sea water column: δ34SH2S and δ34SSO4 were constant in the deep anoxic water (varying within 0.6‰ for sulfide and 0.3‰ for sulfate), with sulfide roughly 54‰ depleted in 34S relative to sulfate. Near the oxic-anoxic interface, however, the δ34SH2S value was ∼3‰ heavier than that in the deep water, which may reflect sulfide oxidation and/or a change in fractionation during in situ sulfide production through sulfate reduction (SR). δ34SH2S and Δ33SH2S data near the oxic-anoxic interface did not provide unequivocal evidence to support the important role of sulfur-intermediate disproportionation suggested by previous studies. Repeated observation of minimum δ34SSO4 values near the interface suggests ‘readdition’ of 34S-depleted sulfate during sulfide oxidation. A slight increase in δ34SSO4 values with depth extended over the water column may indicate a reservoir effect associated with removal of 34S-depleted sulfur during sulfide production through SR. Our δ34SH2S and Δ33SH2S data also do not show a clear role for sulfur-intermediate disproportionation in the deep anoxic water column. We interpret the large difference in δ34S between sulfate and sulfide as reflecting fractionations during SR in the Cariaco deep waters that are larger than those generally observed in culturing studies.  相似文献   
50.
Exploratory synthetic spectra were computed for carbon-rich long-period variables. We used dynamic model atmospheres of Höfner &; Dorfi (1997) and calculated partial pressures, absorption- and scattering coefficients as input for the spectral synthesis code of Jørgensen et al. (1992). First ISO SWS-observations of the carbon-Mira T Dra are compared with our synthetic spectra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号