首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   2篇
  国内免费   4篇
大气科学   13篇
地球物理   2篇
地质学   68篇
海洋学   1篇
自然地理   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   10篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   8篇
  2003年   4篇
  2002年   5篇
  2001年   8篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1995年   1篇
  1993年   6篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
  1983年   2篇
  1980年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
61.
Terms in the heat and vapour flux equations, appropriate to the atmospheric surface layer with horizontal heterogeneity in one direction, have been evaluated empirically. The experimental site was a flooded rice field, which was bounded to windward by a semi-arid region. Local conditions over the rice were always stable, but the vertical fluxes of heat and water vapour were large. All terms in the flux equations were either measured directly, or, if sufficiently small, estimated, except the term containing fluctuating pressure, which was obtained by difference. The relative magnitudes of the major terms (production and pressure covariance) were similar to those reported previously for horizontally homogeneous flow with similar stabilities. Current parameterizations of the pressure covariance terms sometimes gave values which differed by factors of five or ten from the experimental results, and the interrelationships depended upon the stability.  相似文献   
62.
The whole-rock Pb-Pb method has been used to date four of the younger, mainly adamellite, late-tectonic plutonic phases within the ca. 3.5 Ga Shaw Batholith of the Archaean east Pilbara Block. Three suites give ages within error of 2966 Ma (Porphyritic Granites at 2948±50 Ma, Leuco-adamellites at 2943±46 Ma and Garden Creek Adamellite at 3007±48 Ma). The post-tectonic Cooglegong Adamellite gives an age of 2847±34 Ma. The Sm-Nd model isotopic systematics of all four suites indicate derivation from crust ranging between ca. 3200 and 3600 Ma in age. The sources for these four younger plutonic phases were heterogeneous and, although exhibiting some isotopic characteristics of the older (3.5–3.3 Ga) calc-alkali plutonic suites, were more depleted in the LIL elements Rb, U and Th. In addition, the Garden Creek Adamellite and the Cooglegong Adamellite lack the very fractionated and HREE-depleted REE patterns characteristic of both the older calc-alkali plutonic rocks and the Porphyritic Granites and Leuco-adamellites. The crust underlying the Shaw Batholith at ca. 2950 Ma must have been both markedly heterogeneous and variably depleted, a conclusion consistent with the complex tectonic and plutonic evolution of this region.  相似文献   
63.
Stratabound, uraniferous diagenetic xenotime cements provide a minimum depositional age of 1,632±3 Ma for the sedimentary Birrindudu Group in the Killi Killi Hills, Tanami Region in northern Australia. The age of xenotime formation is broadly coeval with that recently proposed (1,650–1,600 Ma) for uranium mineralisation in the unconformity-associated deposits of the Pine Creek Inlier, northern Australia, and Athabasca Basin, Canada. The geological setting and formation model for the uraniferous xenotime crystals are similar to those widely proposed for unconformity-associated uranium deposits, suggesting a genetic link between the two. However, xenotime formation in the Birrindudu Group occurred during an apparently earlier stage of diagenesis, compared to late diagenetic formation of unconformity-associated uranium deposits. This could be explained by variations in the thickness of sediment cover and diachronous diagenesis across the basin, at the time of the basin-wide uranium mobilisation event, herein dated at ca. 1,630 Ma. In such a scenario, stratabound uraniferous xenotime cements could represent the remote distal zones of a more deeply buried, uranium mineralising system. Alternatively, the xenotime layer represents a precursor to, or a source for, later unconformity-associated ore deposition. In this case, the presence of diagenetic uraniferous xenotime in an area prospective for unconformity-associated uranium mineralisation would be an indication of, and still provide an approximate age for, uranium mobilisation within the cover sequence. Xenotime is a far more robust mineral than uraninite for U–Pb geochronology and can potentially provide a more reliable and precise timeframe for uranium mineralisation and subsequent recrystallisation events if present in the immediate uranium-ore environment.  相似文献   
64.
The age of a basement gneiss of the Dom Feliciano Belt along the coast of Rio Grande do Sul has been determined by zircon U–Pb SHRIMP to be about 2.08 Ga for the K-granitic magmatism and 800–590 Ma for the associated low-angle and sub-vertical shear zone deformations. The gneiss is the G3 granitic phase of the Arroio dos Ratos Complex of previous authors, and it now defines a geotectonic environment of juvenile accretion of island arcs in the Paleoproterozoic. The superposition of deformation events during the Neoproterozoic precludes the precise determination of the age of each event in this investigation, but we suggest that the collisional low-angle shear zones occurred at ca. 800 Ma and the sub-vertical shear zones at ca. 600 Ma. Th/U ratios are typically magmatic (about 0.4) in the homogeneous cores of zircons (about 2000 Ma), but are metamorphic (0.01) in the zoned euhedral rims (about 590 Ma).All the Paleoproterozoic gneisses in the region are part of the Encantadas Complex. Archean units, such as the Santa Maria Chico granulites, were all deformed in this major event of the Transamazonian Cycle. The dated gneiss may be correlative with the Epupa Complex north and south of the Kaoko Belt of SW Africa. Ages of the Neoproterozoic deformation are younger in the Kaoko Belt of Namibia than in its Brazilian counterpart.  相似文献   
65.
The Racetrack Au−Ag deposit, in the Archaean Yilgarn Block, Western Australia, is hosted by a porphyritic basalt in a low greenschist facies setting and is associated with a brittle strike-slip fault system. Three distinct and successive stages of hydrothermal activity and late quartz-carbonate veining resulted in multiple veining and/or brecciation: Stages I and II are Au-bearing, whereas Stage III and late veins are barren. The ore shows features of both classic epithermal and mesothermal deposits. Alteration assemblages, typified by sericitization, carbonization, silicification and chloritization, are similar to those of mesothermal gold deposits, wheras the quartz vein-textures including comb, rosette, plumose and banded, ore mineralogyof arsenopyrite, pyrite, chalcopyrite, sphalerite, galena, freibergite, tetrahedrite, tennantite, fahlore, electrum and gold, and metal associations (Cu, As, Ag, Sn, Sb, W, Au and Pb) are more characteristics of epithermal deposits. Fluid inclusions related to Stage II are two phase and aqueous with 1–8 (average 4) wt. % NaCl equiv. and CO2 content of <0.85 molal. Pressure-corrected homogenisation temperatures range from 190°C to 260°C. Mineral assemblages indicate that ore fluid pH ranged between 4.2 and 5.3, fO 2 between 10−38.8 and 10−39.6 bars, and mΣs between 10−3.2 and 10−3.6. Calculated chemical and stable isotope compositions require a component of surface water in the ore fluid depositing the mineralisation, but evidence for deep crustal Pb indicates that deeply sourced fluids were also involved. The deposit is interpreted to have formed in a shallow environment via mixing of deeply sourced fluids, from at least as deep as the base of the greenstone belt, with surface waters. It therefore represents the upper crustal end-member of the crustal depth spectrum of Archaean lode-gold mineralisation.  相似文献   
66.
The Archaean greenstone terrane between Menzies and Kambalda exhibits a coherent, although deformed, stratigraphic sequence intruded by granitoids and bounded by major NNW-trending shear and/or fault zones. The greenstone terrane hosts a large number of lode gold prospects and deposits, including the giant Kalgoorlie deposits. The initial Pb isotope compositions of lode gold deposits, as determined from ore related galena and pyrite, vary systematically in a linear trend on a207Pb/204Pb versus206Pb/204Pb diagram which reflects crustal heterogeneity at the time of mineralisation. Deposits hosted within a 90 km section of the Menzies-Boorara Shear Zone have a uniform, radiogenic initial Pb isotope composition irrespective of temperature of mineralisation and proximity to granitoid-gneiss in plan view. The Pb in these deposits is considered to be derived largely from older felsic crust underlying the greenstone belt and was accessed via this major shear-zone system. Deposits in a transect unrelated to a major shear zone show a systematic correlation between initial Pb isotope compositions and proximity to granitoid-gneiss and/or to mineralisation temperature. These compositions are less radiogenic than those within the Menzies-Boorara Shear Zone, but trend on a207Pb/204Pb versus606Pb/204Pb diagram between this isotope signature and the uniform Pb isotope signature which characterises the >100 km greenstone transect from the Mt Pleasant area through Kalgoorlie to Kambalda. These data are interpreted to reflect Pb derivation from discrete crustal segments within and below the greenstones, and require that mineralisation was related to crustal-scale hydrothermal systems that accessed both sialic mid- to lower-crust and the greenstone succession.  相似文献   
67.
The Camaquã Cu (Au, Ag) and Santa Maria Pb-Zn (Cu, Ag) deposits are the largest base-metal deposits discovered so far in the sedimentary clastic sequences of the Neoproterozoic-age Camaquã Basin. The origin of the Camaquã-Santa Maria deposits has been the centre of dispute, with three alternative genetic hypotheses proposed: a syngenetic model, a diagenetic model, and a magmatic hydrothermal model. In detail, this mineralization has been suggested to be related to sedimentary clastic-diagenetic processes, volcanic-related processes, or deep granitic magmatism.Reevaluation of previous data and new studies in the area yield the following conclusions: (1) mineralization is fracture-controlled and magmatic-hydrothermal in origin rather than stratiform syngenetic or diagenetic; (2) the temperature of deposition of the main ore minerals was 210 to 300°C; (3) the ∂34S of sulphides of around 0% indicates an external magmatic-hydrothermal source of sulphur; (4) Pb isotope ratios of sulphides indicate that metals were derived at the end of the Brasiliano Cycle from a large crustal source with very primitive Pb and that (5) the age of mineralization is 594 Ma, as constrained by U/Pb SHRIMP (Sensitive High Resolution Ion Microprobe) determinations on zircons of the Lavras Granite.Thus, the Camaquã and Santa Maria deposits are interpreted to be of magmatic-hydrothermal origin, with the metals derived from an old crustal-basement source during the end of Dom Feliciano Collisional Orogeny, at 594 Ma, late in the Brasiliano Cycle.The interpretation above is critical for base-metal exploration in the Sul Riograndense Shield. Previous exploration methodologies mainly followed models based on a sedimentary hypothesis for the origin of the deposits. However, the occurrence of mineralization along fractures within specific wall-rocks requires consideration of alternative exploration parameters. These include: (1) ancient EW- and NW-trending regional fractures and their intersections, which are potential structural sites for base-metal mineralization, and (2) preferential wall-rock sites, either rocks with high initial porosity or secondary fracture-induced porosity or soluble rocks which are susceptible to replacement processes. Post-collisional plutonism of the Dom Feliciano Orogeny was the most likely heat source, and also the source of sulphur and base metals. Gravity surveys and alteration studies would be useful to determine the presence of intrusive bodies at depth which may have the potential to host porphyry-style Cu-Au deposits.  相似文献   
68.
Southern Cross was one of the earliest gold mining centres in Western Australia. Over 142 tonnes of gold have been produced from the district, and, on a gold per hectare basis, the Southern Cross greenstone belt in the southwestern Yilgarn Craton is the most productive of Western Australia's Archaean greenstone belts. The SW Yilgarn Craton is characterised by high-grade (amphibolite- to granulite-facies) metamorphism, extensive granitoid magmatism and older greenstone volcanism ages, compared to the well-known greenschist-facies metamorphism and younger (2.7 Ga) eruption ages which dominate in the Eastern Goldfields Province. The Pb-isotope compositions of deep-seated granitoids in the SW Archaean Yilgarn Craton, which were emplaced coeval with a craton-wide major orogenic lode-gold mineralization event at about 2.64–2.63 Ga, have been determined for 96 whole-rock and 24 K-feldspar samples. The Pb isotope data of the granitoids are consistent with a crustal origin for their genesis, probably by reworking (partial melting) of older continental crust. The Pb isotope composition of greenstones, which are the main host rocks for gold mineralisation, and pyrites from the komatiite-hosted syngenetic Ni deposits in the amphibolite-facies Forrestania greenstone belt, have also been determined, with initial Pb-isotope ratios higher than that for the Eastern Goldfields Province. The Pb isotopic character of the orogenic lode-gold deposits in the region is intermediate between coeval granitoid and greenstone Pb, indicating that the ore fluids contained metals from both reservoirs. The Pb in the ore fluid of the most deeply formed deposit, Griffin's Find, overlaps the isotopic composition of coeval granitoids, indicating the deep-seated granitoid magmatism was the primary source for Pb in the ore fluids. Received: 8 October 1998 / Accepted 22 December 1998  相似文献   
69.
Records of Earth's primitive crust are scarce. Eoarchean (older than 3.6 Ga) banded mafic to felsic gneisses have been discovered in the São Francisco Craton, Brazil, pushing back by over 100 million years the oldest gneisses known to date in South America (3.5 Ga). Zircon U‐Pb data yield rock ages from 3,598 to 3,642 Ma with a few ca. 3.65–3.69 Ga grains suggesting even older rocks in the area. Zircon grains show significantly negative to nearly chondritic initial εHf values and two‐stage model ages from 3.82 to 4.33 Ga, which may indicate the existence of a recycled Hadean to early Eoarchean crust in the region. The felsic gneisses are chemically similar to the low‐pressure Tonalite‐Trondhjemite‐Granodiorite association whereas the mafic gneisses have geochemical signatures that resemble within‐plate basaltic andesite to andesite of Iceland (icelandites). The results are relevant to constrain the composition of Earth's first continental crust.  相似文献   
70.
Significant improvements, both in understanding the evolution of zircons and in understanding the geotectonic and metallogenetic evolution of the complex terrain of southern Brazil, are obtained from a SHRIMP geochronology study and reviewed in this paper. The use of backscattered electron and cathodoluminescence images, prior to SHRIMP isotopic determinations, proved of enormous fundamental value for this technique. Zircon is a domainal open‐system mineral in many geological conditions; very old domains may be preserved, but the same crystal may show ages of younger tectonic events. Zircons may recrystallise inwards from the rims or outwards from the cores, and also along euhedral high‐U or metamict thin zones. Zircons also may be recrystallised during gold‐related hydrothermalism, phyllic alteration of granitic rocks. The precise dating of amphibolite dykes can be achieved by the identification and dating of magmatic zircons. Precambrian orogenies are identified along with the intervening intracratonic tectonic cycles of supercontinents in southern Brazil from 3300 to 470 Ma. Granulite protoliths were formed during the Jequié Orogeny (ca 2600 Ma), but extensive arc accretion occurred in the Palaeoproterozoic (ca 2250 Ma) Encantadas Orogeny. Late in the Transamazonian Cycle, granites were formed by crustal melting at about 2000 Ma in the Camboriú Orogeny. Both accretionary and collisional orogenies are also identified in the Neoproterozoic Brasiliano Cycle. These are the accretionary Passinho Orogeny (ca 900 Ma) and São Gabriel Orogeny (ca 700 Ma), that were succeeded by the collisional Dom Feliciano Orogeny (ca 600 Ma). Base‐metal and gold deposition occurred in juvenile island arcs and in late orogenic porphyry‐copper‐type magmatic‐hydrothermal settings during the Neoproterozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号