首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   3篇
  国内免费   1篇
测绘学   3篇
大气科学   15篇
地球物理   53篇
地质学   57篇
海洋学   28篇
天文学   20篇
自然地理   6篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   6篇
  2018年   8篇
  2017年   7篇
  2016年   7篇
  2015年   5篇
  2014年   11篇
  2013年   15篇
  2012年   5篇
  2011年   16篇
  2010年   8篇
  2009年   10篇
  2008年   23篇
  2007年   7篇
  2006年   13篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有182条查询结果,搜索用时 31 毫秒
121.
Observations of deep ocean temperature and salinity in the Labrador and Greenland Seas indicate that there is negative correlation between the activities of deep convection in these two sites. A previous study suggests that this negative correlation is controlled by the North Atlantic Oscillation (NAO). In this study, we discuss this deep convection seesaw by using a coupled atmosphere and ocean general circulation model. In this simulation, the deep convection is realistically simulated in both the Labrador and Greenland Seas and their negative correlation is also recognized. Regression of sea level pressure to wintertime mixed layer depth in the Labrador Sea reveals strong correlation between the convection and the NAO as previous studies suggest, but a significant portion of their variability is not correlated. On the other hand, the convection in the Greenland Sea is not directly related to the NAO, and its variability is in phase with changes in the freshwater budget in the GIN Seas. The deep convection seesaw found in the model is controlled by freshwater transport through the Denmark Strait. When this transport is larger, more freshwater flows to the Labrador Sea and less to the Greenland Sea. This leads to lower upper-ocean surface salinity in the Labrador Sea and higher salinity in the Greenland Sea, which produces negative correlation between these two deep convective activities. The deep convection seesaw observed in the recent decades could be interpreted as induced by the changes in the freshwater transport through the Denmark Strait, whose role has not been discussed so far.  相似文献   
122.
123.
The grain orientations within the matrix of two large-scale welded, two small-scale nonwelded and two nonwelded low-aspect ratio pyroclastic flow deposits are measured to analyze flow behavior. Preferred grain alignments are especially apparent in the middle part of layer 2 of each deposit. Preferred grain alignments do not vary laterally within a 10 m interval. The grain alignments obtained are radial from the source caldera, especially in proximal to medial and plateau-forming facies of pyroclastic flow deposits. Grain alignments are controlled by valley-channel directions for the valley-ponded facies of pyroclastic flow deposits, especially at medial to distal locations. Such local topographic factors strongly affect the data for high-aspect ratio and smallscale deposits, and weakly affect the data for widespread low-aspect ratio pyroclastic flow deposits. This work suggests that grain alignment analysis should be used with care when attempting to determine the location of an unknown source.  相似文献   
124.
125.
In order to constrain the high-pressure behavior of kyanite, multi-anvil experiments have been carried out from 15 to 25 GPa, and 1,350 to 2,500°C. Both forward and reversal approaches to phase equilibria were adopted in these experiments. We find that kyanite breaks down to stishovite + corundum at pressures above ∼15 GPa, and stishovite + corundum should be the stable phase assemblage at the pressure–temperature conditions of the transition zone and the uppermost part of the lower mantle of the Earth, in agreement with previous multi-anvil experimental studies and ab initio calculation results, but in disagreement with some of the diamond-anvil cell experimental studies in the literature. The Al2O3 solubility in nominally dry stishovite has been tightly bracketed by forward and reversal experiments; it is slightly but consistently reduced by pressure increase. Its response to temperature increase, however, is more complicated: increases at low temperatures, maximizes at around 2,000°C, and perhaps decreases at higher temperatures. Consequently, the Al2O3 solubility in dry stishovite at conditions of high temperature–high pressure is very limited.  相似文献   
126.
Abstract. Simulation experiments with a one-dimensional static model for formation of methane hydrate are used to demonstrate models of hydrate occurrence and its generation mechanism for two end-member cases. The simulation results compare well with experimental data for two natural examples (the Nankai Trough and the Blake Ridge).
At the MITI Nankai Trough wells, the hydrate occurrence is characterized by strongly hydrated sediments developing just above the BGHS. Such occurrence can be reproduced well by simulation in which the end-member case of upward advective fluid flow from below the BGHS is set. The strongly hydrated sediments is formed by oversaturated solution with free gas which directly enters the BGHS by the upward advective fluid flow. The recycling of dissociated methane of preexisting hydrate also contributes to the increase of hydrate saturation.
At the Site 997 in the Blake Ridge area, the hydrate occurrence is characterized by thick zone with poorly hydrated sediments and no hydrate zone developing above the hydrate zone. Such occurrence can be reproduced well by simulation in which the end-member case of in-situ biogenic production of methane in the sediment of methane hydrate zone is set. The distribution pattern of hydrate saturation is basically controlled by that of TOC. However, the hydrate concentration near the bottom of the hydrate zone is increased by the effect of recycling of dissociated methane of pre-existing hydrate. No hydrate zone expresses the geologic time needed until the local concentration of methane exceeds the solubility by gradual accumulation of in-situ biogenic methane with burial.  相似文献   
127.
Solubility experiments for nitrogen and noble gases (Ar and Ne) in silicate melts were conducted using two experimental configurations: one was conducted at 1 atmospheric pressure, T =1300°C and oxygen fugacity (fO2) of IW + 0.9 (i.e., 0.9 log units higher than the iron-wüstite buffer) and the other at high pressures (Ptotal ∼ 2 × 108 Pa), 1500°C and fO2 ∼ IW + 6. For the former experiment, isotopically labeled-nitrogen (15N15N-enriched) was used to distinguish dissolved nitrogen from contaminating atmospheric or organic nitrogen and to examine dissolution mechanisms of nitrogen in silicate melts. The results obtained for the two series of experiments are consistent with each other, suggesting that Henry's law is satisfied for fN2 of up to ∼250 atm (2.5 × 107 Pa). The results are also consistent with our earlier results (Miyazaki et al., 1995) obtained at highly oxidizing conditions (fO2 ∼ IW + 10). All these results support physical dissolution of nitrogen as N2 molecules in silicate melts for fO2 from ∼IW + 10 down to ∼IW. The observed solubility (Henry's constant) of nitrogen (3-5 × 10−9 mol/g/atm) is comparable to that of Ar (2-4 × 10−9 mol/g/atm), and much lower than that of Ne (11-14 × 10−9 mol/g/atm) at 1300°C. A preliminary experiment was also performed for partitioning of nitrogen and noble gases between clinopyroxene (cpx) and basaltic melt using a piston cylinder-type apparatus at 1.5 GPa and at 1270 to 1350°C. The obtained cpx/melt partition coefficient of nitrogen is 0.06, slightly lower than those of noble gases (∼0.1 for Ne to Xe), suggesting that nitrogen is as incompatible as or even slightly more incompatible than noble gases. The present results imply that a large nitrogen/Ar fractionation would not be produced by magmatic processes. Therefore, the two orders of magnitude difference between the N2/36Ar ratios in the Earth's atmosphere (∼104) and that in the mantle (∼106) must be explained by some other processes, such as incomplete segregation of metal blobs into the core and their later oxidation.  相似文献   
128.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   
129.
We measured the electrical resistivity of face-centered-cubic (fcc) structured iron hydrides at high pressures up to 65 GPa and high temperatures in a laser-heated diamond anvil cell. The results indicate that the resistivity of stoichiometric fcc FeHx (x ~ 1.0) is smaller than that of fcc Fe at the same pressure and temperature conditions. The same behavior was also observed in fcc FeNiHx (x ~ 1.0). On the other hand, hydrogen-poor fcc FeHx (x < 0.77) showed a resistivity comparable to that of the fcc phase of pure iron. Therefore, we conclude that the stoichiometric fcc Fe (–Ni) hydride is more conductive than Fe (–Ni) with the same crystal symmetry, and the impurity resistivity of hydrogen in Fe is vanishingly small. Even if hydrogen is the major light element in the Earth's core, it would have little influence on the electrical and thermal conductivity of Fe–Ni alloys, and hence the thermal evolution of the core.  相似文献   
130.
We measured the lattice thermal conductivities of Fe0.98O wüstite and iron-rich (Mg,Fe)O magnesiowüstite using the pulsed light heating thermoreflectance technique with a diamond anvil cell up to 61 GPa at 300 K. We found that the thermal conductivity of wüstite does not show a monotonic increase as a function of pressure, contrary to that of MgO periclase. Rocksalt (B1) to rhombohedral B1 transition is likely to induce an abnormal pressure response in the conductivity of wüstite. Our results also show that magnesiowüstite has a lower conductivity than that of MgO and FeO endmembers due to a strong iron impurity effect, which is well reproduced by a model considering phonon-impurity scattering in a binary solid solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号