首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   17篇
地球物理   36篇
地质学   62篇
海洋学   36篇
天文学   47篇
自然地理   14篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   12篇
  2012年   9篇
  2011年   13篇
  2010年   10篇
  2009年   17篇
  2008年   12篇
  2007年   7篇
  2006年   10篇
  2005年   6篇
  2004年   9篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1998年   2篇
  1996年   3篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   6篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有213条查询结果,搜索用时 31 毫秒
211.
We present a new automated algorithm to identify, track, and characterize small-scale brightening associated with solar eruptive phenomena observed in Hα. The temporal, spatially localized changes in chromospheric intensities can be separated into two categories: flare ribbons and sequential chromospheric brightenings (SCBs). Within each category of brightening we determine the smallest resolvable locus of pixels, a kernel, and track the temporal evolution of the position and intensity of each kernel. This tracking is accomplished by isolating the eruptive features, identifying kernels, and linking detections between frames into trajectories of kernels. We fully characterize the evolving intensity and morphology of the flare ribbons by observing the tracked flare kernels in aggregate. With the location of SCB and flare kernels identified, they can easily be overlaid on complementary data sets to extract Doppler velocities and magnetic-field intensities underlying the kernels. This algorithm is adaptable to any dataset to identify and track solar features.  相似文献   
212.
The paper presents investigations of wave climate, tidal inlet hydraulics, and sand sediment bypassing at the entrance to Westport Harbour, South Island, New Zealand. The results complement and extend those of studies of bar morphologies and sediment characteristics already published. Longshore transport of about 1 × 106 m3/year is directed in a net eastward fashion across the inlet because of an in‐built misalignment of the harbour training walls. Approximately 90% of the drift is bypassed, and has been since 1921, by deflection and splitting of the main sediment streams through the inner and outer bars and a transverse channel aoross the entrance. The outer bar appears to be the submarine, downdrift extension of Carters Breach and river load appears to contribute an order of magnitude less sediment to the complex than annual littoral drift. River sediments and littoral drift are mixed off the harbour and a declining proportion over time is recirculated to cause progradation of North Beach. The tidal compartment contributes little to scour of the entrance because of the predominance of bar bypassing. Contrary to the recommendations of several past studies, it is argued that improvements in navigation depths at West‐port are more likely to be obtained through modification of the littoral drift system than they are from tidal compartment enlargement.  相似文献   
213.
Abstract

On shingle beaches, changes in foreshore elevation and sediment distribution landward of the break point are produced largely by variations in the uprush and backwash of waves. However, very little is known about the forces active in this zone.

A field instrument system which senses and records some of the parameters thought to influence beach erosion and deposition in this zone has been constructed. The equipment is also suitable for the investigation of a number of other shore and nearshore processes including erosion on sandy and rocky shores, and flow processes affecting littoral biological communities.

In the swash zone two sensing heads, a dynamometer and a depth recorder, sense variations in uprush and backwash velocities, energies, discharges, and depths of flow. Both devices are electromechanical and are coupled to a recording unit on land by PVC‐insulated cable. The dynamometer (two force plates mounted back‐to‐back on a compression spring and coupled to variable resistances) has been calibrated, statically and in a flume, to obtain velocity determinations accurate to within 10 cm . sec?1 of true flow speed. Average swash zone velocities lie between 100 and 300 cm . sec?1.

A parallel‐wire resistance gauge mounted an a stilling tube records flow depths. As water level rises and falls in the tube it alters resistance in a control circuit. The land unit, amplifiers and a strip‐chart recorder, receives the output from the dynamometer and flow depth gauge. The recorder is equipped with a trip‐pen so that analysis of wave periods or other variables is possible in the field. With poles at known spacings across the shore and the trip‐pen records, velocity distributions across the swash zone can be obtained. Measurements of velocity made near the bed with the dynamometer can then be related to the local surface velocity profile.

Problems with the instrument system include inability to record velocities at several points simultaneously, and unreliable records of backwash parameters with low breakers on shingle beaches because of the small volume of flow and rapid percolation of water into the beach face.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号