首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
大气科学   16篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
Kim  Kwang-Yul  Kim  Beom-Seok 《Climate Dynamics》2020,54(7):3259-3277
Climate Dynamics - East Asian summer monsoon (EASM) precipitation has changed significantly due to regional warming. In this study, effect of regional warming on the EASM summer precipitation is...  相似文献   
12.
Recent extensive studies have suggested that the occurrence of warm-pool El Niño has increased since the late 1970s and will increase in future climate. Occurrence frequencies of cold-tongue and warm-pool El Niño have been investigated in the observational record (1980–2006) and in the future 50 years (2007–2056) based on 100 synthetic SST datasets with estimates of statistical confidence. In the observational record, 80% of the warm-pool El Niño occurred since 1980 over a period of 27 years; only 20% of the warm-pool El Niño occurred prior to 1980 over a period of 110 years. The 100 synthetic datasets, on average, produce 142 months of cold-tongue El Niño in 2007–2056 as opposed to an average 107 months in the same length of the observational data; this is a 20.7% increase in the occurrence of cold-tongue El Niño compared with the observational period. Warm-pool El Niño occurred for 112 months in 2007–2056 as opposed to an average occurrence of 42 months in the observational record; this is 2.5 times the occurrence frequency in the 1980–2006 period in the synthetic datasets. As a result, occurrence frequencies of cold-tongue and warm-pool El Niño in the period of 2007–2056 become quite comparable to each other in the synthetic datasets. It is expected in the next 50 years that warm-pool El Niño will be nearly as frequent as cold-tongue El Niño.  相似文献   
13.
Inclusion of the effects of vegetation feedback in a global climate change simulation suggests that the vegetation–climate feedback works to alleviate partially the summer surface warming and the associated heat waves over Europe induced by the increase in atmospheric CO2 concentrations. The projected warming of 4°C over most of Europe with static vegetation has been reduced by 1°C as the dynamic vegetation feedback effects are included.. Examination of the simulated surface energy fluxes suggests that additional greening in the presence of vegetation feedback effects enhances evapotranspiration and precipitation, thereby limiting the warming, particularly in the daily maximum temperature. The greening also tends to reduce the frequency and duration of heat waves. Results in this study strongly suggest that the inclusion of vegetation feedback within climate models is a crucial factor for improving the projection of warm season temperatures and heat waves over Europe.  相似文献   
14.
15.
In this study, a weather generator for summer (May 19 – September 15) precipitation over South Korea is developed. Precipitation data for 33 years (1979–2011) observed at 57 stations of Korea Meteorological Administration (KMA) are used to develop a new weather generator. Using the cyclostationary empirical orthogonal function (CSEOF) technique, the observed precipitation data is described as a linear combination of deterministic evolution patterns and corresponding stochastic amplitude (principal component) time series. An autoregressive-moving average (ARMA) model is used to generate one hundred sets of synthetic amplitude time series for the period of 1979–2061 (83 years) with similar statistical properties of the original amplitude time series. Based on these synthetic time series and the annually repeating evolution patterns, one hundred sets of synthetic summer precipitation were generated. Statistical characteristics of the synthetic datasets are examined in comparison with those of the KMA observational record for the period of the observational record. Characteristic changes of synthetic precipitations for a future period are also examined. The seasonal cycle in the synthetic precipitation is reproduced faithfully with typical bimodal peaks of summer precipitation. The spatial correlation patterns of the synthetic precipitation are fairly similar to that of the observational data. The frequency-intensity relationship of the synthetic precipitation also looks similar to that of the observational data. In the future period, precipitation amount increases except in the precipitation range of (0,10) mm day?1 with nearly no change in the frequency of no-rain days; frequency increase is particularly conspicuous in the range of (100,500) mm day?1.  相似文献   
16.
In the present study, we use modeling experiments to investigate the impact of the diurnal cycle on the Madden-Julian Oscillation (MJO) during the Australian summer. Physical initialization and a nudging technique enable us to assimilate the observed Tropical Rainfall Measuring Mission (TRMM) rain rate and atmospheric variables from the National Centers for Environmental Prediction—National Center for Atmospheric Research Reanalysis 2 (R2) into the Florida State University Global Spectral Model (FSUGSM), resulting in a realistic simulation of the MJO. Model precipitation is also significantly improved by TRMM rain rate observation via the physical initialization. We assess the influence of the diurnal cycle on the MJO by modifying the diurnal component during the model integration. Model variables are nudged toward the daily averaged values from R2. Globally suppressing the diurnal cycle (NO_DIURNAL) exerts a strong impact on the Maritime Continent. The mean state of precipitation increases and intraseasonal variability becomes stronger over the region. It is well known that MJO weakens as it passes over the Maritime Continent. However, the MJO maintains its strength in the NO_DIURNAL experiment, and the diminution of diurnal signals during the integration does not change the propagating speed of the MJO. We suggest that diminishing the diurnal cycle in NO_DIURNAL consumes less moist static energy (MSE), which is required to trigger both diurnal and intraseasonal convection. Thus, the remaining MSE may play a major role along with larger convective instability and stronger lower level moisture convergence in intensifying the MJO over the Maritime Continent in the model simulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号