首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   10篇
  国内免费   23篇
测绘学   8篇
大气科学   57篇
地球物理   23篇
地质学   22篇
海洋学   14篇
天文学   1篇
综合类   3篇
自然地理   15篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   9篇
  2016年   7篇
  2015年   10篇
  2014年   11篇
  2013年   8篇
  2012年   9篇
  2011年   8篇
  2010年   6篇
  2009年   9篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1979年   1篇
排序方式: 共有143条查询结果,搜索用时 375 毫秒
101.
Boreal wintertime extratropical circulation is studied in relation to the tropical convection during the 1982/83 El Nino and 1988/89 La Nina. The anomaly structure of 1982/83 and 1988/89 over the extratropics reveals remarkably different features as the longitudinal tropical forcing region changes. The Rossby wave source (Positive) shows the largest maximum over East Asia in both years due to the persistent heating from the western Pacific warm pool area. However, the sink term shows contrasting features over the subtropics and extratropics between the two years. In the El Nino year, enhanced tropical convection over the eastern Pacific produces the Rossby wave sink at 10?N and shifted eastward over the North Pacific, while in the La Nina year, the sink area is shifted westward over the North Pacific. The contrasting features between the two events in mean-eddy interaction appears especially over the downstream area of the East Asian Jet. The extension (retraction) of the meanflow eastward (westward) to  相似文献   
102.
2002年3月21-22日影响韩国的沙尘天气分析   总被引:1,自引:0,他引:1  
利用气象卫星、天气形势场和NCEP/NCAR再分析资料,分析了2002年3月21-22日影响韩国沙尘天气的原因. 结果表明:影响韩国沙尘天气的沙尘主要源地是蒙古国和中国内蒙古地区.沙尘天气发生在地面冷锋后部,高压伸展的前面;19日和20日沙尘暴发生后,沙尘沿着西北风输送,21日早晨影响韩国;PM10最高值达到 2 778.2 μg/m3,由于西北风较强,沙尘暴发生后很快影响到韩国,但在韩国持续的时间较短.  相似文献   
103.
The aim of the present study is to investigate the spatial and temporal structures of precipitation over the Korean Peninsula using extensive AWS (automatic weather stations) observation network data for the summertime from May to September. Additionally TRMM/PR precipitation data in the southern part of peninsula was used to investigate the vertical structure. For the spatial and temporal scales of hourly precipitation, the e-folding threshold approach was employed to cut off the correlation in terms of distance in km and time in hours. From a correlation analysis of AWS precipitation in terms of time and space, it was found out that the e-folding distance and e-folding time in correlation coefficients ranged from 50 km–110 km and 1 h–2 h. The shortest distance and time in e-folding values were found to be in July and August. Precipitation structures in May and September tended to be isotropic, a cell-type structure, and those of July and August had an apparent band type, from the southwest to northeast. In the case of the vertical feature of precipitation, the correlation with height showed that the vertically efficient height was within 5 km as convective rain cells with a monthly difference of 1.2 km. In this study, the coastal effect tended to slightly increase threshold values.  相似文献   
104.
沙丘背风侧气流的变化特征及其意义   总被引:6,自引:1,他引:6  
哈斯  王贵勇 《地理科学》2000,20(6):573-576
对腾格里沙漠东南缘格沙丘主、副梁和新月形形沙丘表面气流的野外发现分离流、附着未偏向流和附着偏向流等3种背风坡次生气流。前者以弱的反向流为特征,多发生在横向气流条件下,坡度较陡的背风坡上;后二者具有相对高的风速,多发生在坡度缓和的背风坡上,其方向在横向气流条件下保持原来的方向,在斜向气流作用下发生偏转,且其强度为原始风入射角的余统函数,根据3种次生气流强度,方向等特征,阐述了其相应的风成沉积过程和可能产生的层理类型,并对利用风成交错层理恢复古气流环境中的有关问题作了初步探讨。  相似文献   
105.
The 40km-long, NEE trending Reshui-Taostuo River Fault was found in the southern Dulan-Chaka highland by recent field investigation, which is a strike-slip fault with some normal component. DEM data was generated by small unmanned aerial vehicle(UAV)on key geomorphic units with resolution<0.05m. Based on the interpretation and field investigation, we get two conclusions:1)It is the first time to define the Reshui-Taostuo River Fault, and the fault is 40km long with a 6km-long surface rupture; 2)There are left-handed dislocations in the gullies and terraces cut by the fault. On the high-resolution DEM image obtained by UAV, the offsets are(9.3±0.5) m, (17.9±1.5) m, and(36.8±2) m, measured by topographic profile recovery of gullies. The recovery measurements of two terraces present that the horizontal offset of T1/T0 is(18.2±1.5) m and the T2/T1 is (35.8±2) m, which is consistent with the offsets from gullies. According to the historical earthquake records, a M5 3/4 earthquake on April 10, 1938 and a MS5.0 earthquake on March 21, 1952 occurred at the eastern end of the surface rupture, which may be related to the activity of the fault. By checking the county records of Dulan and other relevant data, we find that there are no literature records about the two earthquakes, which is possibly due to the far distance to the epicenter at that time, the scarcity of population in Dulan, or that the earthquake occurred too long ago that led to losing its records. The southernmost ends of the Eastern Kunlun Fault and the Elashan Fault converge to form a wedge-shaped extruded fault block toward the northwest. The Dulan Basin, located at the end of the wedge-shaped fault block, is affected by regional NE and SW principal compressive stress and the shear stress of the two boundary faults. The Dulan Basin experienced a complex deformation process of compression accompanying with extension. In the process of extrusion, the specific form of extension is the strike-slip faults at each side of the wedge, and there is indeed a north-east and south-west compression between the two controlling wedge-shaped fault block boundary faults, the Eastern Kunlun and Elashan Faults. The inferred mechanism of triangular wedge extrusion deformation in this area is quite different from the pure rigid extrusion model. Therefore, Dulan Basin is a wedge-shaped block sandwiched between the two large-scale strike-slip faults. Due to the compression of the northeast and southwest directions of the region, the peripheral faults of the Dulan Basin form a series of southeast converging plume thrust faults on the northeast edge of the basin near the Elashan Fault, which are parallel to the Elashan Fault in morphology and may converge with the Elashan Fault in subsurface. The southern marginal fault of the Dulan Basin(Reshui-Taostuo River Fault)near the Eastern Kunlun fault zone is jointly affected by the left-lateral strike-slip Eastern Kunlun Fault and the right-lateral strike-slip Elashan Fault, presenting a left-lateral strike-slip characteristic. Meanwhile, the wedge-shaped fault block extrudes to the northwest, causing local extension at the southeast end, and the fault shows the extensional deformation. These faults absorb or transform the shear stress in the northeastern margin of the Tibet Plateau. Therefore, our discovery of the Dulan Reshui-Taostuo River Fault provides important constraints for better understanding of the internal deformation mode and mechanism of the fault block in the northeastern Tibetan plateau. The strike of Reshui-Taostuo River Fault is different from the southern marginal fault of the Qaidam Basin. The Qaidam south marginal burial fault is the boundary fault between the Qaidam Basin and the East Kunlun structural belt, with a total length of ~500km. The geophysical data show that Qaidam south marginal burial fault forms at the boundary between the positive gravity anomaly of the southern East Kunlun structural belt and the negative gravity anomaly gradient zone of the northern Qaidam Basin, showing as a thrust fault towards the basin. The western segment of the fault was active at late Pleistocene, and the eastern segment near Dulan County was active at early-middle Pleistocene. The Reshui-Taostuo River Fault is characterized by sinistral strike-slip with a normal component. The field evidence indicates that the latest active period of this fault was Holocene, with a total length of only 40km. Neither remote sensing image interpretation nor field investigation indicate the fault extends further westward and intersects with the Qaidam south marginal burial fault. Moreover, it shows that its strike is relatively consistent with the East Kunlun fault zone in spatial distribution and has a certain angle with the burial fault in the southern margin of Qaidam Basin. Therefore, there is no structural connection between the Reshui-Taostuo River Fault and the Qaidam south marginal burial fault.  相似文献   
106.
在油气勘探中,与油气相关的磁异常由于其信号非常弱,通常很难从干扰中分离出来,可以证明希尔伯特变换滤波方法增强弱磁异常是一种有效方法,广东三水盆地的剖面处理解释说明了这一点。  相似文献   
107.
108.
"美丽冰冻圈"融入区域发展的途径与模式   总被引:2,自引:0,他引:2  
杨建平  哈琳  康韵婕  肖杰  陈虹举  贺青山 《地理学报》2021,76(10):2379-2390
在探讨“美丽冰冻圈”内涵的基础上,从自然属性与社会经济两个层面、致利与致害两条线,分析了“美丽冰冻圈”与区域可持续发展的关系,“美丽冰冻圈”、区域社会经济发展、人类福祉构成冰冻圈—人类社会经济复合命运共同体。基于中国冰冻圈要素及其变化影响的区域差异性,选取祁连山—河西地区、青藏高原三江源地区、横断山大香格里拉地区,分别代表冰冻圈水资源影响区、冰冻圈灾害影响区、冰冻圈旅游经济区,围绕冰冻圈水资源服务与绿洲经济、雪灾害风险与畜牧业经济、冰雪旅游与区域经济等核心问题,从冰冻圈资源服务与灾害风险视角,详细阐述了冰冻圈融入不同区域发展的途径与模式。在干旱半干旱内陆地区,冰冻圈主要以水源涵养、水量供给与径流调节服务,融入绿洲社会经济发展,是一种冰冻圈水资源支撑型区域发展模式;在青藏高原高寒区,冰冻圈生态环境决定了畜牧业经济的脆弱性,冰冻圈灾害负向影响畜牧业经济,是一种冰冻圈生态支撑+灾害影响型区域发展模式;在冰冻圈旅游经济区,直接依托冰雪资源发展冰雪旅游业,是一种基于冰冻圈资源的旅游经济驱动型区域发展模式。  相似文献   
109.
花海断裂是位于河西走廊西端阿尔金断裂系北侧花海盆地内的一条活动断裂,对该断裂活动性的认识不仅有助于评估该区的地震危险性,而且对深入理解青藏高原向北扩展过程中块体相互作用具有重要的科学意义。遥感解译与地震地质调查表明,花海断裂仅局限于花海盆地内,长度约25 km。断裂走向NNW,南端起自花海镇以南,向北经小泉、大泉、双泉子后穿过山水河,向北逐渐消失在北山山前大型冲积扇前。地貌上,花海断裂南部表现为线性延伸的断层陡坎,北段构成了风成砂丘与冲洪积扇的界线。在断裂北段跨断层陡坎进行了探槽开挖,探槽揭露和光释光年代学测试结果表明,该断裂最新一次古地震事件的时间距今约5万年,全新世以来没有明显的活动迹象,为晚更新世活动断裂。结合陡坎位错分析,花海断裂晚第四纪以来垂直滑动速率小于0.03 mm/a。区域大地构造动力学背景分析表明,花海断裂是在青藏高原向北扩展作用下盆地内形成的次一级活动断裂,是高原外围块体对青藏高原向外扩展的响应。  相似文献   
110.
不同演替阶段群落的环境条件有所不同,变化的环境因子驱使群落水平上功能性状和物种适应环境的生态对策改变,然而次生演替过程中群落功能性状和物种生态对策随演替时间的变化规律尚不清楚.本文以云南大黑山喀斯特地区弃耕后处于不同恢复阶段的天然次生林(3年,6年,20年,40年)和老龄林为研究对象,结合不同群落演替阶段的物种特征和群落结构,分析不同演替阶段叶、枝功能性状的变化规律,以及功能性状与环境因子的关系.结果表明:(1)随着演替的进行,土壤养分(除磷外)和水分逐渐增加,土壤容重先下降后趋于稳定,土壤pH变化不明显;比叶面积逐渐下降,叶片干物质含量和潜在最大高度逐渐增大.叶和枝的氮含量呈先下降后上升的趋势,磷含量均下降,N:P总体呈上升趋势.(2)冗余分析表明,演替早期灌木林阶段主要分布在土壤容重高,水分和养分相对匮乏的环境中,植物往往采取高养分含量、高光合速率、短寿命的开放性策略;演替后期乔木林阶段主要分布在土壤水分和养分相对肥沃的环境中,耐阴树种逐渐占据主导地位,植物通常采取低养分含量、低光合速率、长寿命的保守性策略.其中,土壤含水量、全氮含量、容重和有机质是影响喀斯特植物演替过程中功能性状变化的关键环境因子.研究喀斯特植物功能性状与环境因素随演替的变化规律,以及功能性状如何响应环境变化,旨在为今后科学指导人工植物群落构建和防止植被退化提供依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号