首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   11篇
  国内免费   6篇
测绘学   15篇
大气科学   30篇
地球物理   79篇
地质学   214篇
海洋学   47篇
天文学   39篇
自然地理   30篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2016年   17篇
  2015年   11篇
  2014年   23篇
  2013年   25篇
  2012年   23篇
  2011年   15篇
  2010年   21篇
  2009年   16篇
  2008年   15篇
  2007年   8篇
  2006年   18篇
  2005年   18篇
  2004年   9篇
  2003年   16篇
  2002年   9篇
  2001年   11篇
  2000年   8篇
  1999年   5篇
  1998年   8篇
  1997年   4篇
  1995年   4篇
  1993年   3篇
  1992年   8篇
  1991年   8篇
  1990年   7篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   8篇
  1977年   3篇
  1976年   4篇
  1975年   6篇
  1973年   10篇
  1972年   3篇
  1971年   4篇
  1966年   2篇
  1955年   2篇
排序方式: 共有454条查询结果,搜索用时 15 毫秒
91.
High-performance computing provides unprecedented capabilities to produce higher resolution 4-D models in a fraction of time. Thus, the need exists for a new generation of visualization systems able to maintain parity with the enormous volume of data generated. In attempting to write this much data to disk, each computational step introduces a significant performance bottleneck, yet most existing visualization software packages inherently rely on reading data in from a dump file. Available packages make this assumption of postprocessing at quite a fundamental level and are not very well suited for plotting very large numbers of specialized particles. This necessitates the creation of a new visualization system that meets the needs of large-scale geodynamic modeling. We have developed such a system, gLucifer, using a software framework approach that allows efficient reuse of our efforts in other areas of research. gLucifer is capable of producing movies of a 4-D data set “on the fly” (simultaneously with running the parallel scientific application) without creating a performance bottleneck. By eliminating most of the human efforts involved in visualizing results through postprocessing, gLucifer reconnects the scientist to the numerical experiment as it unfolds. Data sets that were previously very difficult to even manage may be efficiently explored and interrogated without writing to disk, and because this approach is based entirely on memory distributed across as many processors as are being utilized by the scientific application, the visualization solution is scalable into terabytes of data being rendered in real time.  相似文献   
92.
In the Pyrenees, the lherzolites nowhere occur as continuous units. Rather, they always outcrop as restricted bodies, never more than 3 km wide, scattered across Mesozoic sedimentary units along the North Pyrenean Fault. We report the results of a detailed analysis of the geological setting of the Lherz massif (central Pyrenees), the type‐locality of lherzolites and one of the most studied occurrences of mantle rocks worldwide. The Lherz body is only 1.5 km long and belongs to a series of ultramafic bodies of restricted size (a few metres to some hundreds of metres), occurring within sedimentary formations composed mostly of carbonate breccias originating from the reworking of Mesozoic platform limestones and dolomites. The clastic formations also include numerous layers of polymictic breccias reworking lherzolitic clasts. These layers are found far from any lherzolitic body, implying that lherzolitic clasts cannot derive from the in situ fragmentation of an ultramafic body alone, but might also have been transported far away from their sources by sedimentary processes. A detailed analysis of the contacts between the Lherz ultramafic body and the surrounding limestones confirms that there is no fault contact and that sediments composed of ultramafic material have been emplaced into fissures within the brecciated carapace of the peridotites. These observations bear important constraints for the mode of emplacement of the lherzolite bodies. We infer that mantle exhumation may have occurred during Albian strike‐slip deformation linked to the rotation of Iberia along the proto‐North Pyrenean Fault.  相似文献   
93.
Histograms are widely used in geosciences for data analysis and visualization. In cases where a distribution is not fitted to data, histograms are often used to address various sampling- and interpolation-related aspects. However, the results of these applications are substantially affected by the histogram’s number of bins as determined by several binning methods. This paper proposes a new binning approach and compares it with various standard approaches to demonstrate the relative performance of the new approach. Cut-off grade optimization for polymetallic deposits, Monte-Carlo modeling, and derivation of conditional distribution, all of which use histograms, are used as case studies. The proposed technique is based on calculating the squared error for each bin in a histogram, and combining the error values to evaluate the total error for each histogram. The new technique then selects the bin number which minimizes the total error. The results showed that the new binning approach is well suited for binning small datasets and can be used in geoscience applications if needed.  相似文献   
94.
95.
96.
South African urban areas, because of structural control exercised within them, have developed unique characteristics. One of the more distinctive features of urban apartheid is the creation of Homeland townships lying adjacent to certain of the country's towns and cities. This paper seeks to explore the essential motivation underlying the creation of the ethnically distinct urban centre of Mdantsane in the Ciskei Homeland between 1949 and 1988. The reason for the development of Mdantsane, a dormitory township of East London, are explored, as are the primary issues underlying its emergence. In order to fully investigate Mdantsane's evolution it is essential not to divorce the township from developments, through time, in East London. The impact of apartheid planning on the East London region is assessed.  相似文献   
97.
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号