首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5963篇
  免费   599篇
  国内免费   173篇
测绘学   252篇
大气科学   628篇
地球物理   2176篇
地质学   2392篇
海洋学   367篇
天文学   427篇
综合类   190篇
自然地理   303篇
  2023年   3篇
  2022年   15篇
  2021年   39篇
  2020年   24篇
  2019年   30篇
  2018年   459篇
  2017年   405篇
  2016年   298篇
  2015年   178篇
  2014年   157篇
  2013年   158篇
  2012年   680篇
  2011年   471篇
  2010年   161篇
  2009年   186篇
  2008年   175篇
  2007年   144篇
  2006年   160篇
  2005年   867篇
  2004年   896篇
  2003年   664篇
  2002年   197篇
  2001年   80篇
  2000年   51篇
  1999年   28篇
  1998年   26篇
  1997年   27篇
  1996年   16篇
  1995年   4篇
  1994年   8篇
  1993年   8篇
  1991年   12篇
  1990年   15篇
  1989年   7篇
  1987年   12篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1980年   4篇
  1976年   3篇
  1975年   4篇
  1973年   3篇
  1965年   3篇
  1961年   2篇
  1959年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
排序方式: 共有6735条查询结果,搜索用时 25 毫秒
91.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   
92.
We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = ?0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.  相似文献   
93.
94.
Emissions of biogenic volatile organic compounds (BVOC) were measured using a relaxed eddy accumulation (REA) technique on an above-canopy tower in a temperate forest (Changbai Mountain, Jilin province, China) during the 2010 and 2011 summer seasons. Solar global radiation and photosynthetically active radiation (PAR) were also measured. Based on PAR energy dynamic balance, an empirical BVOC emission and PAR transfer model was developed that includes the processes of BVOC emissions and PAR transfer above the canopy level, including PAR absorption and consumption, and scattering by gases, liquids, and particles (GLPs). Simulated emissions of isoprene and monoterpenes were in agreement with observations. The averages of the relative estimator biases for the flux were 39.3 % for isoprene, and 27.1 % for monoterpenes in the 2010 and 2011 growing seasons, with NMSE (normalized mean square error) values of 0.133 and 0.101, respectively. The observed and simulated mean diurnal variations of isoprene and monoterpenes in the 2010 and 2011 growing seasons were evaluated for the validation of the empirical model. Under observed atmospheric conditions, the sensitivity analysis showed that emissions of isoprene and monoterpenes were more sensitive to changes in PAR than to water vapor content or to the magnitude of the scattering factor. The emissions of isoprene and monoterpenes in the 2010 and 2011 growing seasons (from June to September) were estimated using this empirical model along with hourly observational data, with mean hourly emissions of 1.71 and 1.55 mg m?2 h?1 for isoprene, and 0.48 and 0.47 mg m?2 h?1 for monoterpenes in 2010 and 2011, respectively. As formaldehyde (HCHO) is considered as the main oxidation product of isoprene and monoterpenes, it is necessary to investigate the link between HCHO and BVOC emissions. GOME-2 HCHO vertical column densities (VCDs) can be used to estimate BVOC emission fluxes in the Changbai Mountain temperate forest.  相似文献   
95.
96.
During the onset of caldera cluster volcanism at a new location in the Snake River Plain (SRP), there is an increase in basalt fluxing into the crust and diverse silicic volcanic products are generated. The SRP contains abundant and compositionally diverse hot, dry, and often low-δ18O silicic volcanic rocks produced through time during the formation of individual caldera clusters, but more H2O-rich eruptive products are rare. We report analyses of quartz-hosted melt inclusions from pumice clasts from the upper and lower Arbon Valley Tuff (AVT) to gain insight into the initiation of caldera cluster volcanism. The AVT, a voluminous, caldera-forming rhyolite, represents the commencement of volcanism (10.44 Ma) at the Picabo volcanic field of the Yellowstone hotspot track. This is a normal δ18O rhyolite consisting of early and late erupted members (lower and upper AVT, respectively) with extremely radiogenic Sr isotopes and unradiogenic Nd isotopes, requiring that ~50 % of the mass of these elements is derived from melts of Archean upper crust. Our data reveal distinctive features of the early erupted lower AVT melt including: variable F concentrations up to 1.4 wt%, homogenous and low Cl concentrations (~0.08 wt%), H2O contents ranging from 2.3 to 6.4 wt%, CO2 contents ranging from 79 to 410 ppm, and enrichment of incompatible elements compared to the late erupted AVT, subsequent Picabo rhyolites, SRP rhyolites, and melt inclusions from other metaluminous rhyolites (e.g., Bishop Tuff, Mesa Falls Tuff). We couple melt inclusion data with Ti measurements and cathodoluminescence (CL) imaging of the host quartz phenocrysts to elucidate the petrogenetic evolution of the AVT rhyolitic magma. We observe complex and multistage CL zoning patterns, the most critical being multiple truncations indicative of several dissolution–reprecipitation episodes with bright CL cores (higher Ti) and occasional bright CL rims (higher Ti). We interpret the high H2O, F, F/Cl, and incompatible trace element concentrations in the context of a model involving melting of Archean crust and mixing of the crustal melt with basaltic differentiates, followed by multiple stages of fractional crystallization, remelting, and melt extraction. This multistage process, which we refer to as distillation, is further supported by the complex CL zoning patterns in quartz. We interpret new Δ18O(Qz-Mt) isotope measurements, demonstrating a 0.4 ‰ or ~180 °C temperature difference, and strong Sr isotopic and chemical differences between the upper and lower AVT to represent two separate eruptions. Similarities between the AVT and the first caldera-forming eruptions of other caldera clusters in the SRP (Yellowstone, Heise and Bruneau Jarbidge) suggest that the more evolved, lower-temperature, more H2O-rich rhyolites of the SRP are important in the initiation of a caldera cluster during the onset of plume impingement.  相似文献   
97.
Recursive algorithm for fast GNSS orbit fitting   总被引:1,自引:0,他引:1  
Gaussian elimination is an efficient and numerically stable algorithm for estimating parameters and their precision. However, before estimating the parameters, it is often prudent to perform statistical tests to achieve the best fitting model. We use Gaussian elimination to select the best fitting model among candidate models. A succinct relationship between the weighted sum of squared residuals and the previous one is revealed by a volume formula. For quick parameter estimation and determination of weighted sum of squared residuals, a recursive elimination algorithm is proposed in the context of Gaussian elimination. In order to improve the model selection efficiency, the parameter estimation and the determination of the weighted sum of squared residuals are carried out in parallel using the proposed recursive elimination algorithm in which the improvement at each recursive stage is judged by the Bayesian information criterion. Ultimately, the computational complexity and numerical stability of the recursive elimination proposed are briefly discussed, and a GNSS orbit interpolation example is used to verify the results. It shows that the proposed recursive elimination algorithm inherits the numerical stability of the Gaussian elimination, and this algorithm can be used to examine the gain from the newly introduced parameter, dynamically assess the fitting model, and fix the optimal model efficiently. The optimal fitting model with the lowest information is very close to the real situation verified by checkpoints.  相似文献   
98.
Multipath remains one of the major challenges in Global Navigation Satellite System (GNSS) positioning because it is considered the dominant source of ranging errors, which can be classified into specular and diffuse types. We present a new method using wavelets to extract the pseudorange multipath in the time domain and breaking it down into the two components. The main idea is an analysis-reconstruction approach based on application of both continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The proposed procedure involves the use of L1 code-minus-carrier (CMC) observable where higher-frequency terms are isolated as residuals. CMC residuals are analyzed by applying the CWT, and we propose the scalogram as a technique for discerning time–frequency variations of the multipath signal. Unlike Fourier transform, the potential of the CWT scalogram for examining the non-stationary and multifrequency nature of the multipath is confirmed as it simultaneously allows fine detection and time localization of the most representative frequencies of the signal. This interpretation of the CWT scalogram is relevant when choosing the levels of reconstruction with DWT, allowing accurate time domain extraction of both the specular and diffuse multipath. The performance and robustness of the method and its boundary applicability are assessed. The experiment was carried out using a receiver of Campania GNSS Network. The results are given in which specular multipath error is achieved using DWT level 7 approximation component and diffuse multipath error is achieved using DWT level 6 denoised detail component.  相似文献   
99.
By using the air pluviation technique, it is aimed to achieve the desired relative density with uniform void ratio throughout the specimen in order to maintain the homogeneity and to avoid the spatial variability. Further, in order to achieve the maximum deposition intensity, a systematic optimization study has been carried out rigorously in a test tank to determine the diameter of the orifice to be employed for the sieve plates of different porosity and the number of sieve plates to be installed in the diffuser sieve sets. The study has been conducted with four different patterns of sieves with different porosity to achieve a wide range of relative densities for four different uniformly graded Indian sands. The dynamic penetrometer which is considered to be one of the cost effective instruments has been efficiently used to determine the soil resistance at various locations of the test tank for every given height of fall in order to check the uniformity of placement density throughout the sand bed. The study reveals that the sand beds of different relative densities could be achieved using different patterns of diffuser sieves at optimum sand flow rate without compromising the uniformity. The effect of height of fall as well as porosity of diffuser sieves on the relative density of different sands has been studied in detail. The deposition intensity and the relative density obtained from the present study are compared with the values available in the literature.  相似文献   
100.
Soil liquefaction as a transformation of granular material from solid to liquid state is a type of ground failure commonly associated with moderate to large earthquakes and refers to the loss of strength in saturated, cohesionless soils due to the build-up of pore water pressures and reduction of the effective stress during dynamic loading. In this paper, assessment and prediction of liquefaction potential of soils subjected to earthquake using two different artificial neural network models based on mechanical and geotechnical related parameters (model A) and earthquake related parameters (model B) have been proposed. In model A the depth, unit weight, SPT-N value, shear wave velocity, soil type and fine contents and in model B the depth, stress reduction factor, cyclic stress ratio, cyclic resistance ratio, pore pressure, total and effective vertical stress were considered as network inputs. Among the numerous tested models, the 6-4-4-2-1 structure correspond to model A and 7-5-4-6-1 for model B due to minimum network root mean square errors were selected as optimized network architecture models in this study. The performance of the network models were controlled approved and evaluated using several statistical criteria, regression analysis as well as detailed comparison with known accepted procedures. The results represented that the model A satisfied almost all the employed criteria and showed better performance than model B. The sensitivity analysis in this study showed that depth, shear wave velocity and SPT-N value for model A and cyclic resistance ratio, cyclic stress ratio and effective vertical stress for model B are the three most effective parameters on liquefaction potential analysis. Moreover, the calculated absolute error for model A represented better performance than model B. The reasonable agreement of network output in comparison with the results from previously accepted methods indicate satisfactory network performance for prediction of liquefaction potential analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号