首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   17篇
  国内免费   1篇
测绘学   8篇
大气科学   30篇
地球物理   66篇
地质学   96篇
海洋学   27篇
天文学   39篇
综合类   2篇
自然地理   23篇
  2022年   2篇
  2021年   6篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   12篇
  2016年   6篇
  2015年   12篇
  2014年   8篇
  2013年   10篇
  2012年   13篇
  2011年   13篇
  2010年   10篇
  2009年   29篇
  2008年   17篇
  2007年   13篇
  2006年   13篇
  2005年   11篇
  2004年   13篇
  2003年   11篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
排序方式: 共有291条查询结果,搜索用时 46 毫秒
101.
We develop an urban canopy scheme coupled to a mesoscale atmospheric numerical model and evaluate the simulated climate of an Australian city. The urban canopy scheme is based on the Town Energy Budget approach, but is modified to efficiently represent the predominately suburban component of Australian cities in regional climate simulations. Energy conservation is improved by adding a simple model of air-conditioning to prevent the urban parametrization acting as an energy sink during the Australian summer. In-canyon vegetation for suburban areas is represented by a big-leaf model, but with a largely reduced set of prognostic variables compared to previous approaches. Although we have used a recirculation/venting based parametrization of in-canyon turbulent heat fluxes that employs two canyon wall energy budgets, we avoid using a fixed canyon orientation by averaging the canyon fluxes after integrating over 180° of possible canyon orientations. The urban canopy scheme is evaluated by simulating the climate for Melbourne, Australia after coupling it to The Air Pollution Model. The combined system was found to predict a realistic climatology of air temperatures and winds when compared with observations from Environmental Protection Authority monitoring stations. The model also produced a plausible partitioning of the urban energy budget when compared to urban flux-tower studies. Overall, the urban canyon parametrization appears to have reasonable potential for studying present and predicting changes in future Australian urban climates in regional climate simulations.  相似文献   
102.
Constraining the speed of sea level rise at the start of an interglacial is important to understanding the size of the ‘window of opportunity’ available for hominin migration. This is particularly important during the last interglacial when there is no evidence for significant hominin occupation anywhere in Britain. There are very few finer grained fossiliferous sequences in the Channel region that can be used to constrain sea level rise and they are preserved only to the north of the Channel, in England. Of these, the sequence at Stone Point SSSI is by far the most complete. Data from this sequence has been previously reported, and discussed at a Quaternary Research Association Field Meeting, where a number of further questions were raised that necessitated further data generation. In this paper, we report new data from this sequence – thin section analysis, isotopic determinations on ostracod shells, new Optical Stimulated Luminescence ages and Amino Acid Recem analyses. These show early sea level rise in this sequence, starting during the pre-temperate vegetation zone IpI, but no early warming. The implications of this almost certainly last interglacial sequence for the human colonisation of Britain and our understanding of the stratigraphic relationship of interglacial estuarine deposits with their related fluvial terrace sequences is explored.  相似文献   
103.
Quantifying the trophic dynamics of mesopredators in coastal habitats is an essential precursor to understanding their role in linking multiple trophic levels. Traditional dietary analyses may miss key aspects of a species’ feeding ecology and may thus fail to identify trophic linkages between predators and economically important prey populations. We applied stomach content and stable isotope analyses to estimate diet and trophic dynamics and investigated intraspecific dietary diversity of bonnetheads (Sphyrna tiburo) and red drum (Sciaenops ocellatus). Both juvenile and adult bonnetheads and juvenile red drum had diets comprised mainly of crustaceans, notably portunid crabs and penaeid shrimp, with varying degrees of dietary and isotopic niche overlap. Juvenile and adult bonnetheads had high dietary and isotopic niche overlap, whereas the degree of overlap between bonnetheads and red drum varied. Our findings indicate that bonnetheads are dietary specialists whereas red drum are dietary generalists. Further analysis identified intraspecific variability in the diet of each species; adult bonnetheads had the highest prey diversity whereas red drum had the lowest. We show that dietary and isotopic niche overlap and intraspecific variation in diet exist among juvenile and adult bonnetheads and juvenile red drum, though to varying degrees. Our findings demonstrate the importance of fully examining the trophic ecology of species that share habitats and resources, both at individual and population levels.  相似文献   
104.
Fifty years of fluvial studies have posited a variety of conceptual frameworks for characterizing river forms and processes throughout entire basins, including hydraulic geometry, the river continuum concept, self‐organized criticality, and sediment links. This article uses basin‐extent, high resolution observations of fluvial forms in the Nueces River basin, Texas, and Yellowstone National Park to evaluate the ability of these frameworks to characterize system behavior across a multitude of scales. The Nueces data were collected with remote sensing methods and the Yellowstone data were collected through extensive field surveys. The data resolution, spatial extent, and quality of these data sets allow direct comparison between the two areas. The ‘hyperscale’ comparison supports using of each these frameworks at specific scales, but also indicates an irreducible amount of variation in both datasets across many different scales that is not captured by the conceptual frameworks. Moreover, the scales and locations where one framework, such as hydraulic geometry, works well are often not the same scales and locations where another framework, such as the river continuum concept, works well. Because the conceptual frameworks appear to operate at scales and locations distinct from one another, the measurement approaches necessary to observe them must also be at different scales and locations. For example, ‘seeing’ self‐organized criticality in a river system is difficult without an extensive survey through space, whereas the recognition of sediment links requires quite intense sampling in specific river regions. We suggest that these separations between measurement scales represent an incommensurability issue in river studies, making it very difficult to both communicate among and test between two or more competing theories. Making simultaneous hyperscale observations of the river is one approach to minimizing the theory‐ladeness of observation, as deviations from different predictions can be plotted at every scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
105.
This article reports on the special issue of Earth Surface Processes and Landforms dedicated to remote sensing of rivers. This emerging subdiscipline of river science has grown at a rapid rate in recent years because of: (a) the growing desire and need for data to document and explore the full range of spatial and temporal variations in river systems; (b) evolving technologies that enable lower cost data acquisition, processing and analysis at reach to catchment to continental scales; and (c) the increasing engagement of river scientists with GIScience. The convergence of these factors and the ever growing number of practitioners speaks to the need for more communication among researchers, a major reason for creating this special issue. The 12 articles in the volume cover a broad spectrum of applications that use a variety of platforms and sensors, ranging from photogrammetric mapping of riffle‐pool morphology beneath forest canopy using a camera mounted on a hand held pole to satellite‐based synthetic radar mapping of subcontinental scale hydrology of large rivers. In this overview each of the 12 articles is briefly summarized. Based on these works and other research, it is concluded that the time for more widespread application of river remote sensing techniques is now. To promote more widespread use of remote sensing techniques for river science and management, the following are advocated: (a) developing stand alone or plug‐in software products that enable non‐expert users to implement these new methods, (b) incorporating remote sensing of rivers training into classes, workshops, and on‐line tutorials; and (c) promoting more intentional and formal collaboration among members of the river remote sensing community. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
106.
When characterizing geologic natural hazards, specifically granular flows including pyroclastic flows, debris avalanches and debris flows, perhaps the most important factor to consider is the area of inundation. One of the key parameters demarcating the leading edge of inundation is the run-out distance. To define the run-out distance, it is necessary to know when the flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of the Savage-Hutter theory for computing inundation areas of granular flows. The stopping criterion is a function of dimensionless average velocity, pile aspect ratio and internal and bed friction angle and can be implemented on either a global (entire flow) or local (small areas of the flow) level. Slumping piles on a horizontal surface, and geophysical flows over complex topography were simulated. Mountainous areas, such as Colima volcano, Mexico; Casita, Nicaragua; Little Tahoma Peak, USA, and the San Bernardino Mountains, USA, were used as test regions. These areas have combinations of steep, open slopes and sinuous channels. Because of differences in topography and physical scaling, slumping piles in the laboratory and geophysical flows in natural terrain must be scaled differently to determine a reasonable dimensionless relationship for the stopping criterion.  相似文献   
107.
Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, δ13C values of acetate span a wide range from −46.0‰ to −11.0‰ vs. VPDB and change systematically with sediment depth. In contrast, δ13C values of both the bulk dissolved organic carbon (DOC) (−21.6 ± 1.3‰ vs. VPDB) and the low-molecular-weight compound lactate (−20.9 ± 1.8‰ vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1‰ depleted and up to 9.1‰ enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron-accepting process. Further, the isotopic relationship suggests a relative increase in acetate flow to acetoclastic methanogenesis with depth although its contribution to total methanogenesis is probably small. Our study demonstrates how the stable carbon isotope biogeochemistry of acetate can be used to identify pathways of microbial carbon turnover in subsurface environments. Our observations also raise new questions regarding the factors controlling acetate turnover in marine sediments.  相似文献   
108.
The inactivation of enzymes is of great interest for many industrial applications. The effectiveness of photoinactivation of alpha‐amylase, catalase, and urease with 222 nm radiation was investigated in comparison to that at 254 nm. The enzymes were irradiated with different fluence rates of 222 nm radiation emitted by a KrCl‐excimer lamp and with 254 nm radiation produced by a low‐pressure mercury lamp. The relative activities were calculated before and after irradiation. Degradation caused by UV‐radiation was assessed by SDS‐PAGE analysis. The results clearly demonstrated that inactivation of the proteins is much more effective with the 222 nm excimer lamp compared to the 254 nm mercury lamp. Irradiation with the excimer lamp and a UV‐fluence rate of 1000 J/m2 was sufficient to reduce the relative activities of amylase and urease to 15% and that of catalase to 60%. After irradiation with 4000 J/m2, the enzyme activity was almost completely inhibited. In contrast, after irradiation with the mercury lamp with an UV‐fluence rate of 4000 J/m2, the relative activity was still above 85%. The gel patterns showed no visible degradation after irradiation at 254 nm, but a strong and unspecific degradation was obvious after treatment at 222 nm, presumably caused by cleavage of the peptide bonds.  相似文献   
109.
A recursion formulation for the transverse spreading of a solute is developed, and under conditions of steady flow in a stratified aquifer, the transport of a linearly sorbing solute undergoing nonequilibrium sorption is studied. The effect of spatial variability in the velocity field and the sorption kinetics are modeled to see the combined effect of the two processes on the spreading of the solute injected at a point in the aquifer. The main result of this work is a transport model based on a discrete formulation that includes local dispersion and leads to nonasymptotic behavior in the spreading of the plume in a direction normal to the mean flow velocity.  相似文献   
110.
Climate change and high magnitude mass wasting events pose adverse societal effects and hazards, especially in alpine regions. Quantification of such geomorphic processes and their rates is therefore critical but is often hampered by the lack of appropriate techniques and the various spatiotemporal scales involved in these studies. Here we exploit both in situ cosmogenic beryllium-10 (10Be) and carbon-14 (14C) nuclide concentrations for deducing exposure ages and tracing of sediment through small alpine debris flow catchments in central Switzerland. The sediment cascade and modern processes we track from the source areas, through debris flow torrents to their final export out into sink regions with cosmogenic nuclides over an unprecedented five-year time series with seasonal resolution. Data from a seismic survey and a 90 m core revealed a glacially overdeepened basin, filled with glacial and paraglacial sediments. Surface exposure dating of fan boulders and radiocarbon ages constrain the valley fill from the last deglaciation until the Holocene and show that most of the fan existed in early Holocene times already. Current fan processes are controlled by episodic debris flow activity, snow (firn) and rock avalanches. Field investigations, digital elevation models (DEMs) of difference and geomorphic analysis agree with sediment fingerprinting with cosmogenic nuclides, highlighting that the bulk of material exported today at the outlet of the subcatchments derives from the lower fans. Cosmogenic nuclide concentrations steadily decrease from headwater sources to distal fan channels due to the incorporation of material with lower nuclide concentrations. Further downstream the admixture of sediment from catchments with less frequent debris flow activity can dilute the cosmogenic nuclide signals from debris flow dominated catchments but may also reach thresholds where buffering is limited. Consequently, careful assessment of boundary conditions and driving forces is required when apparent denudation rates derived from cosmogenic nuclide analysis are upscaled to larger regions. © 2018 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号