首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
大气科学   18篇
地球物理   14篇
地质学   14篇
海洋学   1篇
天文学   16篇
自然地理   2篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有66条查询结果,搜索用时 905 毫秒
21.
The latest cycle of volcanism on Tenerife has involved the construction of two stratovolcanoes, Teide and Pico Viejo (PV), and numerous flank vent systems on the floor of the Las Cañadas Caldera, which has been partially infilled by magmatic products of the basanite-phonolite series. The only known substantial post-caldera explosive eruption occurred 2 ka bp from satellite vents at Montaña Blanca (MB), to the east of Teide and at PV. The MB eruption began with extrusion of 0.022 km3 of phonolite lava (unit I) from a WNW-ESE fissure system. The eruption then entered an explosive subplinian phase. Over a 7–11 hour period, 0.25 km3 (DRE) of phonolitic pumice (unit II) was deposited from a 15 km high subplinian column, dispersed to the NE by 10 m/s winds. Pyroclastic activity also occurred from vents near PV to the west of Teide. Fire-fountaining towards the end of the explosive phase formed a proximal welded spatter facies. The eruption closed with extrusion of small volume domes and lavas (0.025 km3) at both vent systems. Geochemical, petrological data and Fe-Ti oxide geothermometry indicate the eruption of a chemically and thermally stratified magma system. The most mafic and hottest (875°C) unit I magma can yield the more evolved and cooler (755–825°C) phonolites of units II and III by between 7 and 11% fractional crystallization of an assemblage dominated by alkali feldspar. Analyses of glass inclusions from phenocrysts by ion microprobe show that the pumice was derived from the water-saturated roof zone of a chamber containing 3.0–4.5 wt.% H2O and abundant halogens (F0.35wt.%). Hotter, more mafic tephritic magma intermingled with the evolved phonolites in banded pumice, indicating the injection of mafic magma into the system during or just before eruption. Reconstruction ot the event indicates a small chamber chemically stratified by in situ (side-wall) crystallization at a depth of 3–4 km below PV. Although phonolite is the dominant product of the youngest activity of the Teide-PV system, there has been no eruption of phonolitic magma for at least 500 years from teide itself and for 2000 years from the PV system. Therefore there could be a large volume of highly evolved, volatile-rich magma accumulating in these magma systems. An eruption of fluorine-rich magma comparable with MB would have major damaging effects on the island.  相似文献   
22.
23.
The noble gas components and their distributions were studied in a variety of clasts and in separated phases of clast 2,2 using a detailed stepwise release program. The results show the presence of two distinct trapped components: one appears to be similar to Kenna-type gas [28], the other is characterized by element ratios36Ar/84Kr < 370 and36Ar/132Xe ≥ 900 and is termed Ar-rich component. Silicate phases are identified as carriers of both components; but since they are differentially released, the results imply that multiple carrier phases are required. Unlike results from other meteorites, HF attack removes all but 15% of the xenon. Substantial amounts of trapped and, in many cases, unfractionated air were observed, apparently in reaction products of reduced and easily oxidized minerals. The129Xer release systematics imply the presence of two distinct carriers of extinct129I and suggest lithophilic behavior of I in Abee. The U/Th-4He and K-40Ar data are consistent with a 4.5 Gy age. Amounts of spallogenic He, Ne and Ar yield a cosmic ray exposure age of 8 My. We compare the Ar-rich component to noble gas abundances in planetary atmospheres and we discuss a suggested model of origin.  相似文献   
24.
We discuss observed xenon isotopic signatures in solar system reservoirs and possible relationships. The predominant trapped xenon component in ordinary chondrites (OC) is OC-Xe and its isotopic signature differs from Xe in ureilites, in carbonaceous chondrites, in the atmospheres of Earth and Mars, and in the solar wind. Additional minor Xe components were identified in type 3 chondrites and in the metal phase of chondrites. The OC-Xe and ureilite signatures are both consistent with varying mixtures of HL-Xe and slightly mass fractionated solar-type Xe. Xenon in the Martian atmosphere is found to be strongly mass fractionated by 37.7‰ per amu, relative to solar Xe, favoring the heavy isotopes. Xenon in SNC’s from the Martian mantle show admixture of solar-type Xe, which belongs to an elementally strongly fractionated component. The origin of the isotopic signatures of Ne and Xe in the terrestrial atmosphere are discussed in the light of evidence that the Xe isotopic fractionations in the Martian and terrestrial atmospheres are consistent. However, in the terrestrial atmospheric Xe component excesses are observed for132Xe and also for129,131Xe, relative to fractionated solar Xe. The suggested chemically fractionated fission Xe component (CFF-Xe) seems to closely match the above excesses. We discuss models of origin for planetary volatiles and possible processes driving their evolution to present day compositions.  相似文献   
25.
Abstract— We report nitrogen isotopic data obtained from a stepwise gas release of two grain-size fractions of the gas-rich meteorite Pesyanoe. Cosmic-ray-produced 15Nc may be present in all temperature steps ≥600 °C, and we correct this component using spallation 21Ne data. The resulting ratios reveal the presence of more than one trapped N component. Indigenous N is released above 1000 °C with an isotopic signature of δ15N = ?33‰. This is consistent with the rather uniform signatures of indigenous nitrogen in enstatite meteorites. There is no evidence for the presence of “very light” N of δ15N ? ?200‰. On the other hand, a “heavy” nitrogen component appears in the temperature range 700–800 °C, and coincides with a major release of solar-type noble gases. For a two-component mixture, the isotopic shifts in this temperature range define a lower limit δ15Ncorr = ?6‰ for the second component (e.g., solar-type nitrogen). However, for the case of a solar-type component, the calculated δ15N signature depends on the adopted elemental abundances. For example, adoption of the relative abundances of 14N and noble gases in lunar ilmenite 71501 yields δ15N ? +170, which is in the range of the heavier nitrogen signatures observed on the lunar surface.  相似文献   
26.
27.
We have solved the relativistic equations for the radial oscillations of warm cores in neutron stars by assuming a given law for the interior distribution of temperature-the resulting from the condition of relativistic thermal equilibrium-and focussed on the properties of the fundamental modes.Our results let us to establish well-defined regions of stability in a diagram central temperature versus central density.  相似文献   
28.
An integrated study of the cosmic ray exposure history of the San Juan Capistrano meteorite was carried out using measurements of rare gas isotopic abundances, particle track densities and radioisotope concentrations. Spallation systematics determined for Kr isotopes in lunar samples are shown to be valid also for the San Juan Capistrano and St. Severin meteorites, thus allowing us to determine a reliable 81Kr/83Kr production ratio as needed for applying the 81Kr-Kr dating method. The 81Kr-Kr age of SJC is 28.7 ± 2.0 Myr, about 35% longer than ages determined by spallation He or Ne. The minimum observed track production rate (2.6 × 105 tracks/cm2 · Myr) sets a minimum of 8 cm for the preatmospheric radius of an assumed spherical body. Track density gradients and the low 60Co activity (<2.9 dpm/g Co) both set an upper limit of 10 cm to the radius. Track results show that ablation losses have averaged 6cm. The relative spallation yields of 78Kr and 83Kr, and the ratios 3He/21Ne and 22Ne/21Ne are all compatible with a hard irradiation as would be experienced by a sample depth of about 6 cm in a body of 8–10 cm. The low activities of 54Mn, 22Na and 26Al are also consistent with these irradiation conditions.  相似文献   
29.
30.
A redetermination of the isotopic abundances of atmospheric Ar   总被引:5,自引:0,他引:5  
Atmospheric argon measured on a dynamically operated mass spectrometer with an ion source magnet, indicated systematically larger 40Ar/36Ar ratios compared to the generally accepted value of Nier [Nier A.O., 1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev. 77, 789-793], 295.5 ± 0.5, which has served as the standard for all isotopic measurements in geochemistry and cosmochemistry. Gravimetrically prepared mixtures of highly enriched 36Ar and 40Ar were utilized to redetermine the isotopic abundances of atmospheric Ar, using a dynamically operated isotope ratio mass spectrometer with minor modifications and special gas handling techniques to avoid fractionation. A new ratio 40Ar/36Ar = 298.56 ± 0.31 was obtained with a precision of 0.1%, approximately 1% higher than the previously accepted value. Combined with the 38Ar/36Ar (0.1885 ± 0.0003) measured with a VG5400 noble gas mass spectrometer in static operation, the percent abundances of 36Ar, 38Ar, and 40Ar were determined to be 0.3336 ± 0.0004, 0.0629 ± 0.0001, and 99.6035 ± 0.0004, respectively. We calculate an atomic mass of Ar of 39.9478 ± 0.0002. Accurate Ar isotopic abundances are relevant in numerous applications, as the calibration of the mass spectrometer discrimination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号