首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
大气科学   18篇
地球物理   14篇
地质学   14篇
海洋学   1篇
天文学   16篇
自然地理   2篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
41.
The presence of large ice sheets over North America and North Europe at the Last Glacial Maximum (LGM) strongly impacted Northern hemisphere river pathways. Despite the fact that such changes may significantly alter the freshwater input to the ocean, modified surface hydrology has never been accounted for in coupled ocean–atmosphere general circulation model simulations of the LGM climate. To reconstruct the LGM river routing, we use the ICE-5G LGM topography. Because of the uncertainties in the extent of the Fennoscandian ice sheet in the Eastern part of the Kara Sea, we consider two more realistic river routing scenarios. The first scenario is characterised by the presence of an ice dammed lake south of the Fennoscandian ice sheet, and corresponds to the ICE-5G topography. This lake is fed by the Ob and Yenisei rivers. In the second scenario, both these rivers flow directly into the Arctic Ocean, which is more consistent with the latest QUEEN ice sheet margin reconstructions. We study the impact of these changes on the LGM climate as simulated by the IPSL_CM4 model and focus on the overturning thermohaline circulation. A comparison with a classical LGM simulation performed using the same model and modern river basins as designed in the PMIP2 exercise leads to the following conclusions: (1) The discharge into the North Atlantic Ocean is increased by 2,000 m3/s between 38° and 54°N in both simulations that contain LGM river routing, compared to the classical LGM experiment. (2) The ice dammed lake is shown to have a weak impact, relative to the classical simulation, both in terms of climate and ocean circulation. (3) In contrast, the North Atlantic deep convection and meridional overturning are weaker than during the classical LGM run if the Ob and Yenisei rivers flow directly into the Arctic Ocean. The total discharge into the Arctic Ocean is increased by 31,000 m3/s, relative to the classical LGM simulation. Consequentially, northward ocean heat transport is weaker, and sea ice more extensive, in better agreement with existing proxy data.  相似文献   
42.
43.
The climates of the mid-Holocene (MH, 6,000 years ago) and the Last Glacial Maximum (LGM, 21,000 years ago) have been extensively documented and as such, have become targets for the evaluation of climate models for climate contexts very different from the present. In Part 1 of the present work, we have studied the MH and LGM simulations performed with the last two versions of the IPSL model: IPSL_CM4, run for the PMIP2/CMIP3 (Coupled Model Intercomparion Project) projects and IPSL_CM5A, run for the most recent PMIP3/CMIP5 projets. We have shown that not only are these models different in their simulations of the PI climate, but also in their simulations of the climatic anomalies for the MH and LGM. In the Part 2 of this paper, we first examine whether palaeo-data can help discriminate between the model performances. This is indeed the case for the African monsoon for the MH or for North America south of the Laurentide ice sheet, the South Atlantic or the southern Indian ocean for the LGM. For the LGM, off-line vegetation modelling appears to offer good opportunities to distinguish climate model results because glacial vegetation proves to be very sensitive to even small differences in LGM climate. For other cases such as the LGM North Atlantic or the LGM equatorial Pacific, the large uncertainty on the SST reconstructions, prevents model discrimination. We have examined the use of other proxy-data for model evaluation, which has become possible with the inclusion of the biogeochemistry morel PISCES in the IPSL_CM5A model. We show a broad agreement of the LGM–PI export production changes with reconstructions. These changes are related to the mixed layer depth in most regions and to sea-ice variations in the high latitudes. We have also modelled foraminifer abundances with the FORAMCLIM model and shown that the changes in foraminifer abundance in the equatorial Pacific are mainly forced by changes in SSTs, hence confirming the SST-foraminifer abundance relationship. Yet, this is not the case in all regions in the North Atlantic, where food availability can have a strong impact of foraminifer abundances. Further work will be needed to exhaustively examine the role of factors other than climate in piloting changes in palaeo-indicators.  相似文献   
44.
45.
Abstract— We performed a comprehensive study of the He, Ne, and Ar isotopic abundances and of the chemical composition of bulk material and components of the H chondrites Dhajala, Bath, Cullison, Grove Mountains 98004, Nadiabondi, Ogi, and Zag, of the L chondrites Grassland, Northwest Africa 055, Pavlograd, and Ladder Creek, of the E chondrite Indarch, and of the C chondrites Hammadah al Hamra 288, Acfer 059, and Allende. We discuss a procedure and necessary assumptions for the partitioning of measured data into cosmogenic, radiogenic, implanted, and indigenous noble gas components. For stone meteorites, we derive a cosmogenic ratio 20Ne/22Ne of 0.80 ± 0.03 and a trapped solar 4He/3He ratio of 3310 ± 130 using our own and literature data. Chondrules and matrix from nine meteorites were analyzed. Data from Dhajala chondrules suggest that some of these may have experienced precompaction irradiation by cosmic rays. The other chondrules and matrix samples yield consistent cosmic‐ray exposure (CRE) ages within experimental errors. Some CRE ages of some of the investigated meteorites fall into clusters typically observed for the respective meteorite groups. Only Bath's CRE age falls on the 7 Ma double‐peak of H chondrites, while Ogi's fits the 22 Ma peak. The studied chondrules contain trapped 20Ne and 36Ar concentrations in the range of 10?6–10?9 cm3 STP/g. In most chondrules, trapped Ar is of type Q (ordinary chondritic Ar), which suggests that this component is indigenous to the chondrule precursor material. The history of the Cullison chondrite is special in several respects: large fractions of both CR‐produced 3He and of radiogenic 4He were lost during or after parent body breakup, in the latter case possibly by solar heating at small perihelion distances. Furthermore, one of the matrix samples contains constituents with a regolith history on the parent body before compaction. It also contains trapped Ne with a 20Ne/22Ne ratio of 15.5 ± 0.5, apparently fractionated solar Ne.  相似文献   
46.
Abstract One-third of all the LL-chondrites have exposure ages of ~15 Ma and were exposed to cosmic rays following a collisional break-up. The probability that the 15-Ma peak represents a random signal is calculated to be less than 2%. Considerably lower probabilities are obtained if only LL5s or subgroups of high 40Ar retention are used. Furthermore, we show that the peak shape agrees with statistical constraints obtained from multiple analyses of samples from the St. Severin LL6-chondrite. The frequency in and out of the 15-Ma peak varies significantly for different petrographic LL-types. The radiogenic 40Ar retention systematics (most LL-chondrites retained 40Arrad) shows that no substantial heat pulse resulted in the 15-Ma collisional event. Interestingly, smaller exposure age clusters at ~28 Ma and ~40 Ma match up well with clusters in the histogram of L-chondrites. The distribution of LL-exposure ages is not consistent with that expected for a quasi-continuous injection of LL material into a resonance zone of the asteroid belt. The near absence of exposure ages shorter than 8 Ma either indicates a lack of recent collisional events or considerably longer transfer times than inferred from dynamical considerations.  相似文献   
47.
Abstract— Isotopic compositions and abundances of boron were measured in sixteen chondrules from seven chondrites by ion microprobe mass spectrometry. The chondrules are of the porphyritic, barred, and radial type and host meteorites include carbonaceous, ordinary, and enstatite chondrites. Boron abundances are generally low with average boron concentrations of between 80 and 500 ppb. These abundances are lower than those of bulk chondrites (0.35 to 1.2 ppm; Zhai et al., 1996), confirming earlier suggestions that boron is mostly contained in the matrix. No significant variation in the 11B/10B ratio is observed among these chondrules, outside our experimental error limits of several permil, and B‐isotopic compositions agree with those reported for bulk chondrites. The lack of a significant isotope fractionation between chondrules and matrix implies that the low boron abundances are not the result of a Rayleigh fractionation during chondrule formation. Isotopic heterogeneities within individual chondrules are constrained to be < ±20%0 at > 95% confidence level at a spatial scale of 20–30 μm, significantly lower than the value of about ±40%0 previously reported for chondrules from carbonaceous and ordinary chondrites (Chaussidon and Robert, 1995, 1998). The observed B‐isotopic homogeneity does not conflict with the presence of decay products from extinct 10Be, with (10Be/9Be)0 ? 10?3, as was inferred for calcium‐aluminum‐rich inclusions. Extinct 10Be in chondrules would shift the abundance ratio 11B/10B at best by several permil because of their commonly observed low Be/B ratios (<2). The results show that potential B‐isotopic heterogeneities in the solar nebula due to the presence of components with different B‐isotopic signatures, such as boron produced by high‐energy galactic cosmic rays (11B/10B ? 2.5), or by the hypothetical low‐energy particle irradiation (11B/10B ? 3.5–11) or boron from type II supernovae (11B/10B >> 1), did not survive the chondrule formation processes to a measurable extent.  相似文献   
48.
On the time scale of a century, the Atlantic thermohaline circulation (THC) is sensitive to the global surface salinity distribution. The advection of salinity toward the deep convection sites of the North Atlantic is one of the driving mechanisms for the THC. There is both a northward and a southward contributions. The northward salinity advection (Nsa) is related to the evaporation in the subtropics, and contributes to increased salinity in the convection sites. The southward salinity advection (Ssa) is related to the Arctic freshwater forcing and tends on the contrary to diminish salinity in the convection sites. The THC changes results from a delicate balance between these opposing mechanisms. In this study we evaluate these two effects using the IPSL-CM4 ocean-atmosphere-sea-ice coupled model (used for IPCC AR4). Perturbation experiments have been integrated for 100 years under modern insolation and trace gases. River runoff and evaporation minus precipitation are successively set to zero for the ocean during the coupling procedure. This allows the effect of processes Nsa and Ssa to be estimated with their specific time scales. It is shown that the convection sites in the North Atlantic exhibit various sensitivities to these processes. The Labrador Sea exhibits a dominant sensitivity to local forcing and Ssa with a typical time scale of 10 years, whereas the Irminger Sea is mostly sensitive to Nsa with a 15 year time scale. The GIN Seas respond to both effects with a time scale of 10 years for Ssa and 20 years for Nsa. It is concluded that, in the IPSL-CM4, the global freshwater forcing damps the THC on centennial time scales.  相似文献   
49.
Adjustment and feedbacks in a global coupled ocean-atmosphere model   总被引:2,自引:1,他引:2  
 We report the analysis of two 20-year simulations performed with the low resolution version of the IPSL coupled ocean-atmosphere model, with no flux correction at the air-sea interface. The simulated climate is characterized by a global sea surface temperature warming of about 4 °C in 20 years, driven by a net heat gain at the top of the atmosphere. Despite this drift, the circulation is quite realistic both in the ocean and the atmosphere. Several distinct periods are analyzed. The first corresponds to an adjustment during which the heat gain weakens both at the top of the atmosphere and at the ocean surface, and the tropical circulation is slightly modified. Then, the surface warming is enhanced by an increase of the greenhouse feedback. We show that the mechanisms involved in the model share common features with sensitivity experiments to greenhouse gases or to SST warming. At the top of the atmosphere, most of the longwave trapping in the atmosphere is driven by the tropical circulation. At the surface, the reduction of longwave cooling is a direct response to increased temperature and moisture content at low levels in the atmospheric model. During the last part of the simulation, a regulation occurs from evaporation at the surface and longwave cooling at TOA. Most of the model drift is attributed to a too large heating by solar radiation in middle and high latitudes. The reduction of the north–south temperature gradient, and the related changes in the meridional equator-to-pole ocean heat transport lead to a warming of equatorial and subtropical regions. This is also well demonstrated by the difference between the two simulations which differ only in the parametrization of sea-ice. When the sea-ice cover is not restored to climatology the model does not maintain sea-ice at high latitudes. The climate warms more rapidly and the water vapor and clouds feedback occurs earlier. Received: 24 May 1996 / Accepted: 29 November 1996  相似文献   
50.
 Silicate melts form glasses in a variety of geological environments. The relaxation (equilibration) of the frozen glass structure provides a means of investigating the quench rates of natural glasses, and this cooling history provides an important constraint for models of melt dynamics. Phonolite glasses from the central volcanic edifice of Tenerife, Canary Islands indicate a range of five orders of magnitude cooling rate, determined by modeling the relaxation of the structure-dependent property, enthalpy (H) across the glass transition. The relaxation of enthalpy is determined by heat capacity (c p = ΔHT) measurement of natural glass samples by differential scanning calorimetry (DSC). Upon heating, the heat capacity curve in the vicinity of the glass transition has a geometry characteristic of the previous cooling rate. A series of thermal treatments applied to each individual sample results in a set of sample-specific parameters which are used to model the heat capacity curve of the naturally cooled glass. The cooling rate is then derived. The equivalence of shear and enthalpic relaxation enables the relaxation of enthalpy for these volcanic samples to be described by a general term for the evolution of fictive temperature. Quench rates for thirty-one glasses are calculated to be within the range 10°C s–1 to 7°C per day. The cooling rates quoted are linear approximations across the glass transition. Within different volcanic facies cooling rates depend on several factors. The most rapidly cooled glasses occur where samples lose heat by radiation from the surface. Our analyses indicate that in certain environments, a natural annealing process results in slow quench rates. This is interpreted as either a slow initial cooling process or the reheating of a glass to an annealing temperature within the glass transition interval. The latter results in relaxation to a lower temperature structure. Controls on these processes include the initial temperature and dissipation of thermal energy from the volcanic body. Our results are consistent with an influence of volatiles on quench rates in volcanic bombs where glass adjacent to vesicular layers is relatively rapidly quenched. We interpret this as a rapid quench rate frozen into the glass resulting from a change in viscosity due to volatile degassing. In lava flows, the conduction of heat from the hot flow interior controls the cooling process and diminishes the effect of volatile exsolution. Relaxation geospeedometry can be applied to glass samples from a variety of geological environments where cooling rates cannot be measured directly. Such measurements provide a means of determining cooling rates for a variety of volcanic processes, an independent calibration for existing temperature and time data and a means for testing cooling-rate-dependent models. Received: 9 January 1996 / Accepted: 13 May 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号