首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   2篇
  国内免费   5篇
测绘学   3篇
大气科学   25篇
地球物理   16篇
地质学   54篇
海洋学   5篇
天文学   40篇
综合类   1篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2020年   6篇
  2019年   1篇
  2018年   9篇
  2017年   15篇
  2016年   8篇
  2015年   3篇
  2014年   17篇
  2013年   12篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1985年   1篇
排序方式: 共有147条查询结果,搜索用时 156 毫秒
41.
Many theories and mechanisms have been proposed to explain the phenomenon of clear-air turbulence (CAT), and some of them have been successful in predicting light, moderate and, in some cases, severe turbulence. It is only recently that skill in the forecasting of the severe form of CAT, which could lead to injuries to passengers and damage to aircraft, has improved. Recent observations and simulations suggest that some severe to extreme turbulence could be caused by horizontal vortex tubes resulting from secondary instabilities of regions of high shear in the atmosphere. We have conducted direct numerical simulations to understand the scale relationship between primary structures (larger-scale structures related to one of the causes mentioned above) and secondary structures (smaller-sized, shear structures of the size of aircraft). From shear layer simulations, we find that the ratio of sizes of primary and secondary vortices is of the right order to generate aircraft-scale vortex tubes from typical atmospheric shear layers. We have also conducted simulations with a mesoscale atmospheric model, to understand possible causes of turbulence experienced by a flight off the west coast of India. Our simulations show the occurrence of primary flow structures related to synoptic conditions around the time of the incident. The evidence presented for this mechanism also has implications for possible methods of detection and avoidance of severe CAT.  相似文献   
42.
Atmospheric dynamical mechanisms have been prevalently used to explain the characteristics of the summer monsoon intraseasonal oscillation (MISO), which dictates the wet and dry spells of the monsoon rainfall. Recent studies show that ocean–atmosphere coupling has a vital role in simulating the observed amplitude and relationship between precipitation and sea surface temperature (SST) at the intraseasonal scale. However it is not clear whether this role is simply ‘passive’ response to the atmospheric forcing alone, or ‘active’ in modulating the northward propagation of MISO, and also whether the extent to which it modulates is considerably noteworthy. Using coupled NCEP–Climate Forecast System (CFSv2) model and its atmospheric component the Global Forecast System (GFS), we investigate the relative role of the atmospheric dynamics and the ocean–atmosphere coupling in the initiation, maintenance, and northward propagation of MISO. Three numerical simulations are performed including (1) CFSv2 coupled with high frequency interactive SST, the GFS forced with both (2) observed monthly SST (interpolated to daily) and (3) daily SST obtained from the CFSv2 simulations. Both CFSv2 and GFS simulate MISO of slightly higher period (~60 days) than observations (~45 days) and have reasonable seasonal rainfall over India. While MISO simulated by CFSv2 has realistic northward propagation, both the GFS model experiments show standing mode of MISO over India with no northward propagation of convection from the equator. The improvement in northward propagation in CFSv2, therefore, may not be due to improvement of the model physics in the atmospheric component alone. Our analysis indicates that even with the presence of conducive vertical wind shear, the absence of meridional humidity gradient and moistening of the atmosphere column north of convection hinders the northward movement of convection in GFS. This moistening mechanism works only in the presence of an ‘active’ ocean. In CFSv2, the lead-lag relationship between the atmospheric fluxes, SST and convection are maintained, while such lead-lag is unrealistic in the uncoupled simulations. This leads to the conclusion that high frequent and interactive ocean–atmosphere coupling is a necessary and crucial condition for reproducing the realistic northward propagation of MISO in this particular model.  相似文献   
43.
A research agenda is currently developing around the linkages between ecosystem services and poverty alleviation. It is therefore timely to consider which conceptual frameworks can best support research at this nexus. Our review of frameworks synthesises existing research on poverty/environment linkages that should not be overlooked with the adoption of the topical language of ecosystem services. A total of nine conceptual frameworks were selected on the basis of relevance. These were reviewed and compared to assess their ability to illuminate the provision of ecosystem services, the condition, determinants and dynamics of poverty, and political economy factors that mediate the relationship between poverty and ecosystem services. The paper synthesises the key contributions of each of these frameworks, and the gaps they expose in one another, drawing out lessons that can inform emerging research. Research on poverty alleviation must recognize social differentiation, and be able to distinguish between constraints of access and constraints of aggregate availability of ecosystem services. Different frameworks also highlight important differences between categories of services, their pathways of production, and their contribution to poverty alleviation. Furthermore, we highlight that it is important to acknowledge the limits of ecosystem services for poverty alleviation, given evidence that ecosystem services tend to be more associated with poverty prevention than reduction. We conclude by reflecting on the relative merits of dynamic Social–Ecological Systems frameworks versus more static checklists, and suggest that research on ecosystem services and poverty alleviation would be well served by a new framework distilling insights from the frameworks we review.  相似文献   
44.
We describe a procedure for automated detection of sunspots from SoHO/MDI full-disk continuum images. The MDI Level-1.8 continuum images were first corrected for the limb darkening and stray light, and then were flat-fielded. Sunspots were extracted using a newly developed automated sunspot detection procedure, which is based on the level set, namely the selective binary and Gaussian function regularized level set (SBGFRLS) method (Zhang et al., Image Vis. Comput. 28, 668, 2010). In this method we initialize a two-dimensional level-set function and evolve it using a signed pressure force (SPF) function. For sunspot detection, the level-set function was defined twice, first for umbra and then for penumbra extraction. Using this procedure, along with the characterization of detected sunspots we have also generated tracking reports of all sunspots in a fully unsupervised manner.  相似文献   
45.
We present properties of intensity oscillations of a sunspot in the photosphere and chromosphere using G band and Ca II H filtergrams from Hinode. Intensity power maps as function of magnetic field strength and frequency reveal reduction of power in the G band with an increase in photospheric magnetic field strength at all frequencies. In Ca II H, however, stronger fields exhibit more power at high frequencies, particularly in the 4.5–8.0 mHz band. Power distributions in different locations of the active region show that the oscillations in Ca II H exhibit more power compared to that of the G band. We also relate the power in intensity oscillations with different components of the photospheric vector magnetic field using near simultaneous spectro-polarimetric observations of the sunspot from the Hinode spectropolarimeter. The photospheric umbral power is strongly anti-correlated with the magnetic field strength and its line-of-sight component but there is a good correlation with the transverse component. A reversal of this trend is observed in the chromosphere except at low frequencies(ν≤ 1.5 mHz). The power in sunspot penumbrae is anti-correlated with the magnetic field parameters at all frequencies(1.0 ≤ν≤ 8.0 mHz) in both the photosphere and chromosphere, except that the chromospheric power shows a strong correlation in the frequency range 3–3.5 mHz.  相似文献   
46.
This paper reports on the strength and structure of the Kuroshio Extension and its recirculation gyres. In the time average, quasi-permanent recirculation gyres are found to the north and south of the Kuroshio Extension jet. The characteristics of these recirculations gyres are determined from the combined observations from the Kuroshio Extension System Study (KESS) field program (June 2004–June 2006) and include current meters, pressure and current recording inverted echo sounders, and subsurface floats. The position and strength of the recirculation gyres simulated by a high-resolution numerical model are found to be consistent with the observations. The circulation pattern that is revealed is of a complex system of multiple recirculation gyres that are embedded in the crests and troughs of the quasi-permanent meanders of the Kuroshio Extension. At the location of the KESS array, the Kuroshio Extension jet and its recirculation gyres transport of about 114 Sv. This represents a 2.7-fold increase in the transport of the current compared to the Kuroshio's transport at Cape Ashizuri before it separates from the coast and flows eastward into the open ocean. This enhancement in the current's transport comes from the development of the flanking recirculation gyres. Estimates from an array of inverted echo sounders and a high-resolution ocean general circulation model are of similar magnitude.  相似文献   
47.
48.
Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, pre-monsoon, SW monsoon and NE monsoon seasons. The diurnal variation is characterized by a cross-over from negative to positive values at 0700 h, occurrence of maximum around noon and return to negative values in the late evening. The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat flux G ? is estimated in all seasons. Daytime surface energy balance at the surface on wet and dry seasons is investigated. The average Bowen’s ratio during the wet and dry seasons were 0.541 and 0.515, respectively indicating that considerable evaporation takes place at the surface. The separate energy balance components were examined and the mean surface energy balance closure was found to be 0.742 and 0.795 for wet and dry seasons, respectively. When a new method that accounts for both soil thermal conduction and soil thermal convection was adopted to calculate the surface heat flux, the energy balance closure was found to be improved. Thus on the land surface under study, the soil vertical water movement is significant.  相似文献   
49.
This paper addresses some of the issues related to externally occulted solar coronagraph; vignetting and achievable resolution due to an external occulter. The analytical expression by Evans (J Opt Soc Am 38:1083–1085, 1948) is used to perform the initial calculations. An expression for the vignetting for a given external occulter and field angle is derived. The values obtained with the derived expression are verified with those obtained by ZEMAX an Optical design software. The degradation in angular resolution of the system due to vignetting is also presented and an empirical relation to calculate the normalized resolution for a given amount of vignetting is obtained.  相似文献   
50.

Physical oceanography measurements reveal a strong salinity (0.18 psu km−1) and temperature (0.07 °C km−1) front off the east coast of India in December 1997. T–S diagrams suggest lateral mixing between the fresh water at the coast and the ambient warmer, saltier water. This front seems to be the result of southward advection of fresh and cool water, formed in the northern Bay of Bengal during the monsoon, by the East Indian Coastal Current, as suggested by the large-scale salinity structure in the SODA re-analysis and the anti-cyclonic gyre in the northwestern Bay of Bengal during winter. The data further reveals an offshore front in January, which appears to be the result of a meso-scale re-circulation around an eddy, bringing cold and freshwater from the northern Bay of Bengal further away from the shore. Our cruise data hence illustrates that very strong salinity fronts can appear in the Bay of Bengal after the monsoon, as a result of intense coastal circulation and stirring by eddies.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号