首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   18篇
  国内免费   1篇
测绘学   3篇
大气科学   9篇
地球物理   44篇
地质学   74篇
海洋学   8篇
天文学   57篇
综合类   2篇
自然地理   7篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   8篇
  2018年   12篇
  2017年   17篇
  2016年   12篇
  2015年   11篇
  2014年   12篇
  2013年   4篇
  2012年   21篇
  2011年   16篇
  2010年   12篇
  2009年   9篇
  2008年   11篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
51.
52.
Natural Hazards - The western Makran subduction zone is capable of producing considerable tsunami run-up heights that penetrate up to 5 km inland. In this study, we show how climate change...  相似文献   
53.
54.
55.
Statistical and deterministic methods are widely used in geographic information system based landslide susceptibility mapping. This paper compares the predictive capability of three different models, namely the Weight of Evidence, the Fuzzy Logic and SHALSTAB, for producing shallow earth slide susceptibility maps, to be included as informative layers in land use planning at a local level. The test site is an area of about 450 km2 in the northern Apennines of Italy where, in April 2004, rainfall combined with snowmelt triggered hundreds of shallow earth slides that damaged roads and other infrastructure. An inventory of the landslides triggered by the event was obtained from interpretation of aerial photos dating back to May 2004. The pre-existence of mapped landslides was then checked using earlier aerial photo coverage. All the predictive models were run on the same set of geo-environmental causal factors: soil type, soil thickness, land cover, possibility of deep drainage through the bedrock, slope angle, and upslope contributing area. Model performance was assessed using a threshold-independent approach (the ROC plot). Results show that global accuracy is as high as 0.77 for both statistical models, while it is only 0.56 for SHALSTAB. Besides the limited quality of input data over large areas, the relatively poorer performance of the deterministic model maybe also due to the simplified assumptions behind the hydrological component (steady-state slope parallel flow), which can be considered unsuitable for describing the hydrologic behavior of clay slopes, that are widespread in the study area.  相似文献   
56.
The morphometry of 432 glacial cirques in the Maritime Alps (Western French‐Italian Alps), studied over several years of fieldwork, was analysed with the use of a geographical information system. Some of the parameters automatically evaluated from digital elevation models required an objective and relatively new definition. In particular, cirque length was measured along a line that, from the threshold midpoint, splits the cirque into two equivalent surfaces; cirque width was automatically drawn as the longest line inscribed in the cirque and perpendicular to the length line. Significant correlations were found among the different factors and parameters analysed. In particular, cirque shape analysis showed that cirques develop allometrically in the three dimensions, i.e. more in length and width than in altitudinal range. Nevertheless cirques of the Maritime Alps have a regular, almost circular shape (mean L/W value = 1.07). The correlations among length, width and area are all very high (r2= 0.8–0.9). In terms of size, cirques show a wide range in area from 0.06 to 5.2 km2 with a mean value of 0.4 km2. The largest cirques are found on SSW‐facing slopes and at high elevations. Small cirques can be found at all altitudes but all those at high elevation are part of compound cirques at the main head valleys. Most cirques (37%) are characterized by a northern aspect; NE and SW are also frequent directions.  相似文献   
57.
This contribution deals with fast Earth–Moon transfers with ballistic capture in the patched three-body model. We compute ensembles of preliminary solutions using a model that takes into account the relative inclination of the orbital planes of the primaries. The ballistic capture orbits around the Moon are obtained relying on the hyperbolic invariant structures associated to the collinear Lagrangian points of the Earth–Moon system, and the Sun–Earth system portion of the transfers are quasi-periodic orbits obtained by a genetic algorithm. The trajectories are designed to be good initial guesses to search optimal cost-efficient short-time Earth–Moon transfers with ballistic capture in more realistic models.  相似文献   
58.
Linné is a simple crater, with a diameter of 2.23 km and a depth of 0.52 km, located in northwestern Mare Serenitatis. Recent high‐resolution data acquired by the Lunar Reconnaissance Orbiter Camera revealed that the shape of this impact structure is best described by an inverted truncated‐cone. We perform morphometric measurements, including slope and profile curvature, on the Digital Terrain Model of Linné, finding the possible presence of three subtle topographic steps, at the elevation of +20, ?100, and ?200 m relative to the target surface. The kink at ?100 m might be related to the interface between two different rheological layers. Using the iSALE shock physics code, we numerically model the formation of Linné crater to derive hints on the possible impact conditions and target physical properties. In the initial setup, we adopt a basaltic projectile impacting the Moon with a speed of 18 km s?1. For the local surface, we consider either one or two layers, in order to test the influence of material properties or composite rheologies on the final crater morphology. The one‐layer model shows that the largest variations in the crater shape take place when either the cohesion or the friction coefficient is varied. In particular, a cohesion of 10 kPa marks the threshold between conical‐ and parabolic‐shaped craters. The two‐layer model shows that the interface between the two layers would be exposed at the observed depth of 100 m when an intermediate value (~200 m) for the upper fractured layer is set. We have also found that the truncated‐cone morphology of Linné might originate from an incomplete collapse of the crater wall, as the breccia lens remains clustered along the crater walls, while the high‐albedo deposit on the crater floor can be interpreted as a very shallow lens of fallout breccia. The modeling analysis allows us to derive important clues on the impactor size (under the assumption of a vertical impact and collision velocity equal to the mean value), and on the approximate, large‐scale preimpact target properties. Observations suggest that these large‐scale material properties likely include some important smaller scale variations, disclosed as subtle morphological steps in the crater walls. Furthermore, the modeling results allow advancing some hypotheses on the geological evolution of the Mare Serenitatis region where Linné crater is located (unit S14). We suggest that unit S14 has a thickness of at least a few hundreds of meters up to about 400 m.  相似文献   
59.
60.
Drumlins are subglacial bedforms streamlined in the direction of ice flow. Common in deglaciated landscapes, they have been widely studied providing rich information on their internal geology, size, shape, and spacing. In contrast with bedform investigations elsewhere in geomorphology (aeolian and fluvial dunes and ripples for example) most drumlin studies derive observations from relict, and thus static features. This has made it difficult to gain information and insights about their evolution over time, which likely hampers our understanding of the process(es) of drumlin formation. Here we take a morphological approach, studying drumlin size and spacing metrics. Unlike previous studies which have focussed on databases derived from entire ice sheet beds, we adopt a space‐for‐time substitution approach using individual drumlin flow‐sets distributed in space as proxies for different development times/periods. Framed and assisted by insights from aeolian and fluvial geomorphology, we use our metric data to explore possible scenarios of drumlin growth, evolution and interaction. We study the metrics of the size and spacing of 36 222 drumlins, distributed amongst 71 flow‐sets, left behind by the former British‐Irish Ice Sheet, and ask whether behaviour common to other bedform phenomena can be derived through statistical analysis. Through characterizing and analysing the shape of the probability distribution functions of size and spacing metrics for each flow‐set we argue that drumlins grow, and potentially migrate, as they evolve leading to pattern coarsening. Furthermore, our findings add support to the notion that no upper limit to drumlin size exists, and to the idea that perpetual coarsening could occur if given sufficient time. We propose that the framework of process and patterning commonly applied to non‐glacial bedforms is potentially powerful for understanding drumlin formation and for deciphering glacial landscapes. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号