首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   9篇
  国内免费   2篇
测绘学   10篇
大气科学   18篇
地球物理   92篇
地质学   152篇
海洋学   25篇
天文学   82篇
自然地理   46篇
  2021年   6篇
  2020年   11篇
  2019年   6篇
  2018年   6篇
  2017年   8篇
  2016年   10篇
  2015年   5篇
  2014年   10篇
  2013年   24篇
  2012年   14篇
  2011年   8篇
  2010年   12篇
  2009年   19篇
  2008年   11篇
  2007年   12篇
  2006年   15篇
  2005年   10篇
  2004年   10篇
  2003年   12篇
  2002年   17篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1992年   8篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1977年   3篇
  1976年   6篇
  1975年   8篇
  1974年   5篇
  1973年   5篇
  1970年   4篇
  1962年   4篇
  1961年   3篇
  1960年   6篇
  1959年   4篇
  1956年   3篇
  1955年   4篇
  1952年   3篇
  1940年   3篇
  1937年   4篇
  1936年   3篇
排序方式: 共有425条查询结果,搜索用时 265 毫秒
41.
If we are to limit global warming to 2 °C, all sectors in all countries must reduce their emissions of GHGs to zero not later than 2060–2080. Zero-emission options have been less explored and are less developed in the energy-intensive basic materials industries than in other sectors. Current climate policies have not yet motivated major efforts to decarbonize this sector, and it has been largely protected from climate policy due to the perceived risks of carbon leakage and a focus on short-term reduction targets to 2020. We argue that the future global climate policy regime must develop along three interlinked and strategic lines to facilitate a deep decarbonization of energy-intensive industries. First, the principle of common but differentiated responsibility must be reinterpreted to allow for a dialogue on fairness and the right to development in relation to industry. Second, a greater focus on the development, deployment and transfer of technology in this sector is called for. Third, the potential conflicts between current free trade regimes and motivated industrial policies for deep decarbonization must be resolved. One way forward is to revisit the idea of sectoral approaches with a broader scope, including not only emission reductions, but recognizing the full complexity of low-carbon transitions in energy-intensive industries. A new approach could engage industrial stakeholders, support technology research, development and demonstration and facilitate deployment through reducing the risk for investors. The Paris Agreement allows the idea of sectoral approaches to be revisited in the interests of reaching our common climate goals.

Policy relevance

Deep decarbonization of energy-intensive industries will be necessary to meet the 2 °C target. This requires major innovation efforts over a long period. Energy-intensive industries face unique challenges from both innovation and technical perspectives due to the large scale of facilities, the character of their global markets and the potentially high mitigation costs. This article addresses these challenges and discusses ways in which the global climate policy framework should be developed after the Paris Agreement to better support transformative change in the energy-intensive industries.  相似文献   
42.
We present results from 14 nights of observations of Titan in 1996-1998 using near-infrared (centered at 2.1 microns) speckle imaging at the 10-meter W.M. Keck Telescope. The observations have a spatial resolution of 0.06 arcseconds. We detect bright clouds on three days in October 1998, with a brightness about 0.5% of the brightness of Titan. Using a 16-stream radiative transfer model (DISORT) to model the central equatorial longitude of each image, we construct a suite of surface albedo models parameterized by the optical depth of Titan's hydrocarbon haze layer. From this we conclude that Titan's equatorial surface albedo has plausible values in the range of 0-0.20. Titan's minimum haze optical depth cannot be constrained from this modeling, but an upper limit of 0.3 at this wavelength range is found. More accurate determination of Titan's surface albedo and haze optical depth, especially at higher latitudes, will require a model that fully considers the 3-dimensional nature of Titan's atmosphere.  相似文献   
43.
44.
Abstract— The presence of isotopic anomalies is the most unequivocal demonstration that meteoritic material contains circumstellar or interstellar components. In the case of organic compounds in meteorites and interplanetary dust particles (IDPs), the most useful isotopic tracer has been deuterium (D). We discuss four processes that are expected to lead to D enrichment in interstellar materials and describe how their unique characteristics can be used to assess their relative importance for the organics in meteorites. These enrichment processes are low‐temperature gas phase ion‐molecule reactions, low‐temperature gas‐grain reactions, gas phase unimolecular photodissociation, and ultraviolet photolysis in D‐enriched ice mantles. Each of these processes is expected to be associated with distinct regiochemical signatures (D placement on the product molecules, correlation with specific chemical functionalities, etc.), especially in the molecular population of polycyclic aromatic hydrocarbons (PAHs). We describe these differences and discuss how they may be used to delineate the various interstellar processes that may have contributed to meteoritic D enrichments. We also briefly discuss how these processes may affect the isotopic distributions in C, O, and N in the same compounds.  相似文献   
45.
We present near-IR spectra of solid CO2 in H2O and CH3OH, and find they are significantly different from that of pure solid CO2. Peaks not present in either pure H2O or pure CO2 spectra become evident when the two are mixed. First, the putative theoretically forbidden CO2 (2ν3) overtone near 2.134 μm (4685 cm−1), that is absent from our spectrum of pure solid CO2, is prominent in the spectra of H2O/CO2=5 and 25 mixtures. Second, a 2.74-μm (3650 cm−1) dangling OH feature of H2O (and a potentially related peak at 1.89 μm) appear in the spectra of CO2-H2O ice mixtures, but are probably not diagnostic of the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with H2O. Warming causes some peak positions and profiles in the spectrum of a H2O/CO2=5 mixture to take on the appearance of pure CO2. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 (2ν3) overtone near 2.134 μm (4685 cm−1) is not present in pure CO2 but prominent in mixtures, it may be a good observational (spectral) indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. These observations may be applicable to Mars polar caps as well as outer Solar System bodies.  相似文献   
46.
47.
Summary Conclusion This colloquium on solar prominences - the first ever held - has shown that a major part of activity in prominence research in recent years concentrated on both observation and computation of the magnetic conditions which were found to play a crucial role for the development and the maintainance of prominences. Remarkable progress was made in fine-scale measurements of photospheric magnetic fields around filaments and in internal field measurements in prominences. In addition, important information on the structure of the magnetic fields in the chromosphere adjacent to the filaments may be derived from high resolution photographs of the H fine structure around filaments which have become available recently; unfortunately, an unambiguous determination of the vector field in the chromosphere is not yet possible.It is quite clear, now, that stable filaments extend along neutral lines which divide regions of opposite longitudinal magnetic fields. Different types of neutral lines are possible, depending on the history and relationship of the opposite field regions. There is convincing evidence that the magnetic field in the neighbouring chromosphere may run nearly parallel to the filament axis and that there are two field components in stable prominences: an axial field dominant in the lower parts and a transverse field dominant in the higher parts.Methods for the computation of possible prominence field configurations from measured longitudinal photospheric fields were developed in recent years. In a number of cases (e.g. for loop prominences) the observed configuration could be perfectly represented by a force-free or even a potential field; poor agreement was found between computed and measured field strengths in quiescent prominences. In order to reconcile both of them it is necessary to assume electric currents. Unambiguous solutions will not be found until measurements of the vector field in the photosphere and in the prominences are available.The two-dimensional Kippenhahn-Schlüter model is still considered a useful tool for the study of prominence support and stability. However, a more refined model taking into account both field components and considering also thermal stability conditions is available now. It was proposed that quiescent prominences may form in magnetically neutral sheets in the corona where fields of opposite directions meet.As for the problem of the origin of the dense prominence material there are still two opposite processes under discussion. The injection of material from below, which was mainly applied to loop prominences, has recently been considered also a possible mechanism for the formation of quiescent prominences. On the other hand, the main objections against the condensation mechanism could be removed: it was shown that (1) sufficient material is available in the surrounding corona, and that (2) coronal matter can be condensed to prominence densities and cooled to prominence temperatures in a sufficiently short time.The energy balance in prominences is largely dependent on their fine structure. It seems that a much better radiative loss function for optically thin matter is now available. The problem of the heat conduction can only be treated properly if the field configuration is known. Very little is known on the heating of the corona and the prominence in a complicated field configuration. For the optically thick prominences the energy balance becomes a complicated radiative transfer problem.Still little is known on the first days of prominence development and on the mechanism of first formation which, both, are crucial for the unterstanding of the prominence phenomenon. As a first important step, it was shown in high resolution H photographs that the chromospheric fine structure becomes aligned along the direction of the neutral line already before first filament appearance. More H studies and magnetic field measurements are badly needed.Recent studies have shown that even in stable prominences strong small-scale internal rotational or helical motions exist; they are not yet understood. On the other hand, no generally agreed interpretation of large-scale motions of prominences seems to exist. A first attempt to explain the ascendance of prominences, the Disparitions Brusques, as the result of a kink instability was made recently.New opportunities in prominence research are offered by the study of invisible radiations: X-rays and meterwaves provide important information, not available otherwise, on physical conditions in the coronal surroundings of prominences; EUV observations will provide data on the thin transition layer between the cool prominence and the hot coronal plasma.Mitt. aus dem Fraunhofer Institut No. 111.  相似文献   
48.
Interstellar gas streaming through the solar system undergoes both elastic collisions with solar wind ions and destructive, ionizing processes. The Boltzmann equation is set up, with linear Fokker-Planck terms describing the glancing elastic collisions. Solutions combining the dynamical effects of the central force field and the diffusion in velocity space are derived, appropriate to cool gas.For the He component of the streaming gas, if initially at 100 K, the collisional heating dominates inside 2 a.u. upstream and 5 a.u. downstream. A modified formula is given for the density in the downstream wake, as enhanced by gravitational focussing. Calculations of the helium resonant radiation backscatter require substantial modification.  相似文献   
49.
Optimization of mooring observations in Northern Bering Sea   总被引:1,自引:0,他引:1  
The problem of the optimal sampling strategy for moored current velocity observations in the Northern Bering Sea is addressed. We analyze dynamically induced correlations in the North Bering Sea currents and conduct their sensitivity analysis to optimize positions of a limited number of moorings. Optimization of the sampling strategy is performed with respect to robustness of the reconstruction of the North Bering Sea circulation with a particular emphasis on the accurate monitoring of the mean Bering Strait transport. Computations reveal four major regions in the North Bering Sea basin that are highly correlated with the Bering Strait transport. Apart from the regions within the Bering Strait itself, they include the Anadyr Strait and a region 100 km south of the Cape of Prince of Wales. Results of the sensitivity analysis are tested in the framework of twin data experiments with the quasi-stationary and oscillatory background circulations.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号