首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   4篇
大气科学   7篇
地球物理   30篇
地质学   18篇
海洋学   19篇
天文学   4篇
自然地理   16篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   8篇
  2009年   6篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1968年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
31.
32.
Water column optical properties of Greater Florida Bay were investigated in the context of their impacts on seagrass distribution. Scattering played an important role in light attenuation throughout the shallow water system. The northwest region was characterized by an absence of seagrasses and the highest scattering by particles, mostly from resuspended carbonate sediments. Higher seagrass densities were observed in the open waters just north of the Florida Keys, where absorption coefficients were dominated by colored dissolved organic material and scattering was lower than in the northwest region. Patchy dense seagrass meadows were observed in the clear waters south of the Keys where scattering and absorption were low and contributed equally to light attenuation. In general, seagrasses were observed in areas where >7.5% of surface irradiance reached the plants and where optical properties were not dominated by scattering. Although the prevention of eutrophication and nuisance algal blooms may be necessary for preserving seagrass meadows in this system, our observations and model calculations indicate that nutrient control alone may be insufficient to permit seagrass recolonization if optical properties are dominated by particulate scattering from resuspended sediments.  相似文献   
33.
Dynamic ocean processes produce small thermal variations that induce spatial and temporal variability in the ocean's index of refraction and in the spatial scale along an acoustic propagation path. This paper reports measurements and analysis of thermal microstructure effects on ping-to-ping amplitude and phase variability of shallow-water direct-path acoustic propagation in the 20-200 kHz frequency range. These measurements were conducted during a joint experiment conducted by the Naval Research Laboratory and the North Atlantic Treaty Organization Supreme Allied Commander Atlantic (SACLANT) Undersea Research Centre, La Spezia, Italy, in 8 m of water off American Beach, located between Pisa and Livorno, Italy. Experimental observations are compared with predictions for isotropic and anisotropic turbulence, as well as for sea-surface swell. Measured phase and log-amplitude variances coincide with predictions and are relatively insensitive to weak water-column stability. The sea-surface swell dominates phase variances for this data and turbulence dominates log-amplitude variances. These results provide a reasonable lower limit on high-frequency ping-to-ping amplitude and on phase variability produced by benign shallow-water thermal fluctuations.  相似文献   
34.
Stratovolcanoes and lava domes are particularly susceptible to sector collapse resulting from wholesale rock failure as a consequence of decreasing rock strength. Here, we provide insights into the influence of thermal and cyclic stressing on the strength and mechanical properties of volcanic rocks. Specifically, this laboratory study examines the properties of samples from Mount St. Helens; chosen because its strength and stability have played a key role in its history, influencing the character of the infamous 1980 eruption. We find that thermal stressing exerts different effects on the strengths of different volcanic units; increasing the heterogeneity of rocks in situ. Increasing the uniaxial compressive stress generates cracking, the timing and magnitude of which was monitored via acoustic emission (AE) output during our experiments. AEs accelerated in the approach to failure, sometimes following the pattern predicted by the failure forecast method (Kilburn 2003). Crack damage during the experiments was tracked using the evolving static Young’s modulus and Poisson’s ratio, which represent the quasi-static deformation in volcanic edifices more accurately than dynamic elastic moduli which are usually implemented in volcanic models. Cyclic loading of these rocks resulted in a lower failure strength, confirming that volcanic rocks may be weakened by repeated inflation and deflation of the volcanic edifice. Additionally, volcanic rocks in this study undergo significant elastic hysteresis; in some instances, a material may fail at a stress lower than the peak stress which has previously been endured. Thus, a volcanic dome repeatedly inflated and deflated may progressively weaken, possibly inducing failure without necessarily exceeding earlier conditions.  相似文献   
35.
36.
We used principal components analysis and multiple logistic regression to investigate the relationships between environmental variables and the distributions of 71 species of river-dependent vascular plants in north-eastern New South Wales, Australia. Our analysis defined seven main environmental factors, summarised (in order of decreasing frequency of statistically significant association with species distributions) as exposure, salinity, stream size, stone scarcity, nutrient enrichment, grazing pressure and rockiness. The main environmental correlates of the presence or absence of macrophyte species in our study were broadly similar to those reported elsewhere, but the relatively low apparent importance of nutrients and grazing was unexpected. We were not able to fully separate the effects of climate-related and non-climatic environmental variables because variables of both types loaded strongly on some principal components, but we suggest that both types of variables should be included in models that aim to forecast potential shifts in plant distributions under projected climatic change. Vascular plants have been neglected in monitoring programs for Australian rivers and their conservation requires a better understanding of patterns and trends in distribution and abundance.  相似文献   
37.
The purpose of this study is to compare the reliability of various methods of estimating normal rock fracture compliance from elastic wave measurements. We compare ultrasonic through‐transmission laboratory measurements for a smooth fracture in a Westerly granite specimen with numerical simulations and analytical solutions. The focus is on deriving compliance from time delays. The influence of specimen and source transducer width was constrained using numerical wave simulations. We find that measured ultrasonic phase delays are better suited to estimate the fracture compliance than group delays. Using the frequency domain instead of the time domain increases the accuracy of the fracture compliance estimates. We further show that for cases where precise phase delay measurements are unavailable, employing first break times in conjunction with numerical simulations can be considered as an alternative.  相似文献   
38.
39.
We present a multifractal analysis of GRB time series used to quantify the variability of the light curve. We discuss the advantages and disadvantages of multifractal analysis, including sensitivity to noise, and burst intensity, and present results for a few sample bursts.  相似文献   
40.
Scattering of seismic waves can be shown to have a frequency dependenceQ –1 3–v if scattering is produced by arrays of inhomogeneities with a 3D power spectrumW 3D(k) k –v. In the earth's crust and upper mantle the total attenuation is often dominated by scattering rather than intrinsic absorption, and is found to be frequency dependent according toQ –1 , where –1<–0.5. IfD 1 is the fractal dimension of the surface of the 3D inhomogeneities measured on a 2D section, then this corresponds respectively to 1.5<D 11.75, since it can be shown that =2(D 1–2). Laboratory results show that such a distribution of inhomogeneities, if due to microcracking, can be produced only at low stress intensities and slow crack velocities controlled by stress corrosion reactions. Thus it is likely that the earth's brittle crust is pervaded by tensile microcracks, at least partially filled by a chemically active fluid, and preferentially aligned parallel to the maximum principal compressive stress. The possibility of stress corrosion implies that microcracks may grow under conditions which are very sensitive to pre-existing heterogeneities in material constants, and hence it may be difficult in practice to separate the relative contribution of crack-induced heterogeneity from more permanent geological heterogeneities.By constrast, shear faults formed by dynamic rupture at critical stress intensities produceD 1=1, consistent with a dynamic rupture criterion for a power law distribution of fault lengths with negative exponentD. The results presented here suggest empirically thatD 1-1/2(D+1), thereby providing the basis for a possible framework to unify the interpretation of temporal variations in seismicb-value (b-D/2) and the frequency dependence of scattering attenuation ().This is PRIS contribution 046.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号