首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1692篇
  免费   50篇
  国内免费   17篇
测绘学   45篇
大气科学   161篇
地球物理   388篇
地质学   680篇
海洋学   145篇
天文学   229篇
综合类   6篇
自然地理   105篇
  2021年   14篇
  2020年   10篇
  2019年   13篇
  2018年   34篇
  2017年   31篇
  2016年   55篇
  2015年   37篇
  2014年   45篇
  2013年   103篇
  2012年   64篇
  2011年   88篇
  2010年   85篇
  2009年   100篇
  2008年   85篇
  2007年   85篇
  2006年   73篇
  2005年   97篇
  2004年   78篇
  2003年   55篇
  2002年   58篇
  2001年   51篇
  2000年   36篇
  1999年   33篇
  1998年   33篇
  1997年   18篇
  1996年   27篇
  1995年   24篇
  1994年   22篇
  1993年   13篇
  1992年   22篇
  1991年   12篇
  1990年   18篇
  1989年   12篇
  1988年   11篇
  1987年   12篇
  1986年   19篇
  1985年   16篇
  1984年   22篇
  1983年   13篇
  1982年   10篇
  1981年   16篇
  1980年   9篇
  1979年   11篇
  1978年   10篇
  1977年   12篇
  1976年   15篇
  1975年   6篇
  1974年   13篇
  1973年   7篇
  1971年   4篇
排序方式: 共有1759条查询结果,搜索用时 15 毫秒
31.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some fast-track dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.On leave from the Department of Mathematics, University of Pisa, Via Buonarroti 2, 56127 Pisa, Italy, thanks to the G. Colombo fellowships of the European Space Agency.  相似文献   
32.
The eclogite-facies metasedimentary rocks in the Münchberg gneiss complex (T=630±30° C/P17–24 kbar) locally contain CO2–N2-rich fluid inclusions of extremely low molar volumes (32 cm3/mol) in quartz. These fluid compositions are mainly found in rocks intercalated with calcsilicate bands. Densities were determined from low-temperature phase transitions like stable or metastable homogenization (L+VL), partial homogenization (S+L+VS+L) and the transition S+LL (L = liquid, V = vapour, S = solid). The high fluid densities are in agreement with eclogite-facies pressure and temperature and subsequent amphibolite facies. CO2–N2 inclusions were not observed in adjacent eclogites nor in non-calcareous metasediments. These rock types contain predominantly H2O-rich inclusions correlating with amphibolite-facies conditions. The variation of fluid composition with lithological differences indicates local fluid gradients and speaks against a pervasive fluid flow during eclogite-facies metamorphism.  相似文献   
33.
With the soft X-ray detector (0.2–0.284 keV) aboard the Astronomical Netherlands Satellite (ANS) we have searched for X-ray emission from hot star coronae and peculiar stars. On Sirius ( CMa) and Capella ( Aur) X-ray emission has been measured at 6 and 5 level, respectively, above background. In all other cases the search revealed no evidence for soft X-ray emission. Upper limits to the luminosities of about 25 star coronae (main-sequence stars, (sub)giants, and supergiants) and of 4 peculiar stars ( Sco, Lyr, P Cyg, and Car) have been obtained.Paper presented at the COSPAR/IAU Symposium on Fast Transients in X-and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   
34.
The history of variations in water level of Lake Constance, as reconstructed from sediment and pollen analysis of a sediment sequence from the archaeological site of Arbon-Bleiche 3, shows an abrupt rise in lake level dendrochronologically dated to 5375 yr ago (5320 yr relative to AD 1950). This event, paralleled by the destruction of the Neolithic village by fire, provoked the abandonment of this prehistoric lake-shore location established in the former shallow bay of Arbon-Bleiche, and was the last of a series of three episodes of successively higher lake level, the first occurring at 5600-5500 cal yr B.P. The dendrochronologically dated rise event was synchronous with an abrupt increase in atmospheric 14C. This supports the hypothesis of an abrupt climate change forced by varying solar activity. Moreover, the three successive episodes of higher lake level between 5600 and 5300 cal yr B.P. at Arbon-Bleiche 3 coincided with climatic cooling and/or changes in moisture conditions in various regions of both hemispheres. This period corresponds to the mid-Holocene climate transition (onset of the Neoglaciation) and suggests inter-hemispheric linkages for the climate variations recorded at Arbon-Bleiche 3. This mid-Holocene climate reversal may have resulted from complex interactions between changes in orbital forcing, ocean circulation and solar activity. Finally, despite different seasonal hydrological regimes, the similarities between lake-level records from Lake Constance and from Jurassian lakes over the mid-Holocene period point to time scale as a crucial factor in considering the possible impact of climate change on environments.  相似文献   
35.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
36.
37.
38.
Lake Teletskoye occupies a narrow graben located in the northwestern sector of the Altai fold belt in South Siberia. The lake basin is thought to have formed during the Pleistocene as a distant result of the Cenozoic collision of India and Eurasia that caused a tectonic reactivation of the Palaeozoic Gorny–Altai (GA) and West Sayan (WS) blocks.The present work reports of a pilot fission-track study performed on 13 apatite separates collected from rocks that were sampled along two profiles in close proximity of the lake. The age–length data and AFT thermochronological modelling reveal two important phases of cooling in the Altai Mountains, a first one during the Late Jurassic–Early Cretaceous and a second one that started in the Miocene–Pliocene and that persists until today. The first event is interpreted to result from uplift-induced denudation probably related to the closure of the Mongol–Okhotsk Ocean; the second event can be linked to the young Cenozoic movements that lie at the origin of the formation of the Lake Teletskoye basin.  相似文献   
39.
A combined volcanological, geochemical, paleo-oceanological, geochronological and geophysical study was undertaken on the Kurile Basin, in order to constrain the origin and evolution of this basin. Very high rates of subsidence were determined for the northeastern floor and margin of the Kurile Basin. Dredged volcanic samples from the Geophysicist Seamount, which were formed under subaerial or shallow water conditions but are presently located at depths in excess of 2300 m, were dated at 0.84±0.06 and 1.07±0.04 Ma with the laser 40Ar/39Ar single crystal method, yielding a minimum average subsidence rate of 1.6 mm/year for the northeast basin floor in the Quaternary. Trace element and Sr–Nd–Pb isotope data from the volcanic rocks show evidence for contamination within lower continental crust and/or the subcontinental lithospheric mantle, indicating that the basement presently at 6-km depth is likely to represent thinned continental crust. Average subsidence rates of 0.5–2.0 mm/year were estimated for the northeastern slope of the Kurile Basin during the Pliocene and Quaternary through the determination of the age and paleo-environment (depth) of formation of sediments from a canyon wall. Taken together, the data from the northeastern part of the Kurile Basin indicate that subsidence began in or prior to the Early Pliocene and that subsidence rates have increased in the Quaternary. Similar rates of subsidence have been obtained from published studies on the Sakhalin Shelf and Slope and from volcanoes in the rear of the Kurile Arc. The recent stress field of the Kurile Basin is inferred from the analysis of seismic activity, focal mechanism solutions and from the structure of the sedimentary cover and of the Alaid back-arc volcano. Integration of these results suggests that compression is responsible for the rapid subsidence of the Kurile Basin and that subsidence may be an important step in the transition from basin formation to its destruction. The compression of the Kurile Basin results from squeezing of the Okhotsk Plate between four major plates: the Pacific, North American, Eurasian and Amur. We predict that continued compression could lead to subduction of the Kurile Basin floor beneath Hokkaido and the Kurile Arc in the future and thus to basin closure.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号