首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
大气科学   3篇
地球物理   15篇
地质学   17篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   3篇
  1968年   2篇
  1959年   1篇
  1958年   1篇
排序方式: 共有35条查询结果,搜索用时 109 毫秒
21.
Geohazards assessment and mapping of some Balkan countries   总被引:1,自引:0,他引:1  
The assessment of geological hazard is a topic with significant interest for the Balkans. During the last decade of twentieth century, most of the countries in the region have embarked on the road of a hasty transitory period from totalitarian regimes to democracy. Development of free market economy has given rise to uncontrolled movement of people, fast construction of housing and facilities and unproportioned accumulation of population around and in big cities. Besides Greece, an old member of European Union, and two newcomers in the organization, Romania and Bulgaria, the other countries are all hoping to enter the Union as faster as they can. Many different candidate or full-fledged member country programs of European Community offer a lot of joint and cross-border projects for constructing road infrastructure and facilities. As development accelerates in the Balkans and given the intensive geohazard elements that this territory exhibits, it becomes increasingly important to understand, study, and map these elements for being aware of the damage to the total environment these hazards might cause. The geohazard map and assessment of some Balkan countries has been carried out through two scientific meetings in Ohrid, Macedonia, and Tirana, Albania during 2007. The map is compiled in the Albanian Geological Survey, Tirana, Albania in the scale 1:1,000,000. As a base map, we used the topographic map produced by VGI, formerly Yugoslavia mapping authorities. As a seismic layer in our map, we used the values of peak ground acceleration obtained from Global Seismic Hazard Assessment Program. Two catalogs were constructed: The first one that contains the crustal earthquakes (hypocentral depth within first 70?km) and the second one that contains intermediate earthquakes (hypocentral depth below 70?km). This work is largely based on previous studies and investigations by earth scientists and specialists of each country comprised in this territory. In this respect, the map we constructed should be considered as a preliminary composite geohazard map with the possibility to be enriched and added with other new elements and data in the future.  相似文献   
22.
23.
The network of undergraduate schools comprises 2,336 schools and sections in towns and the countryside, especially in Transylvania, Criana, Maramure and Banat. Preschool and primary education is given in Hungarian, German, Ukrainian, Russian, Serbian, Bulgarian, Slovak, Czech, Croat, Turkish, Polish and the Gypsy languages. Secondary and high-schools function only in Hungarian, German and Serbian. Instruction in Hungarian, German, Serbian, Slovak and the Ukrainian languages is given within some sections opened at certain secondary and high-schools. Publications, however, are far more numerous — newspapers and journals, magazines and reviews are issued in sixteen languages: Hungarian, German, Gypsy, Serbian, Bulgarian, Ukrainian, Turkish, Russian, Slovak, Czech, Armenian, Yiddish, Greek, Polish, Italian and Albanian. Some of these publications are bilingual, articles being written in Romanian, too, and others only in Romanian.  相似文献   
24.
A numerical algorithm is proposed for the simulation of the earthquake process during a seismic cycle. The algorithm is based on a heterogeneous discrete model of the fault plane and assumes there are two kinds of seismicity: background crack-like earthquakes and asperity-like events. An active zone of the fault contains an asperity distribution with a characteristic elementary area. The background seismicity randomly develops shear stress-free surfaces which tend to surround the asperities as in a 2D percolation process. The model parameters are taken from observations on the Vrancea (Romania) intermediate depth seismic region. The results emphasize the significant role of the geometry in the mechanism of the seismic failure. The algorithm predicts the nonlinear behavior in the frequency-magnitude distribution, the decrease of theb-slope associated with the asperity-like events, the magnitude range of major earthquakes, and their recurrence times.  相似文献   
25.
26.
Zusammenfassung Das miozäne Steinsalz tritt in Rumänien in 2 großen tektonischen Einheiten auf: im Transylvanischen Becken und in der Außenzone des Karpatenzuges (zum Transylvanischen Becken gehörte im Miozän auch das Gebiet des Maramures-Beckens). Im Inneren des Karpatenbogens, wo eine große Lagune vorhanden war, zeichnen sich die Salzablagerungen durch folgende Merkmale aus: spärliches Auftreten der Dolomitschiefer, geringe Mengen reinen Gipses, Vorhandensein des Steinsalzes in Form einer fortlaufenden, durchschnittlich Hunderte von Metern mächtigen Schicht, die sich ungefähr 15 000 km2 weit erstreckt, Mangel an Kalisalzen. Die Außenzonen der Karpaten bildeten einen kleinen, Zehner von Kilometer weiten Zwischenlagunen-Komplex und sind durch folgende Eigenschaften gekennzeichnet: große Mengen an Dolomitschiefern, sehr viel durch Ton verunreinigter Gips, einzelne Steinsalzstöcke und geringe Kalisalzmengen. Die Verteilung des Salzes beweist, daß die Verbindung des Weltmeeres mit der Transylvanischen Lagune im Bereich des Ostkarpaten-Bogens stattfand und nicht durch den Mure-Graben, wie früher angenommen wurde. Die mittlere Donausenke, die ein Festland darstellte, enthält infolgedessen keine Salze. Im Inneren des Transylvanischen Beckens gab es eine kreisförmige Wasserströmung: das Meerwasser kam durch den Ostkarpaten-Bogen, wo die schwerlöslichen Salze abgelagert wurden, ins Innere des Beckens. Hier bildeten sich die NaCl-Lagerstätten. Das Wasser strömte dann — mit den K- und Mg-Salzen-durch den Olt-Engpaß wieder aus dem Becken ins Weltmeer zurück. Die geologischen Kochsalzreserven im Transylvanischen Becken sind mindestens 150mal so groß wie in den Außenzonen der Karpaten. Die alte These, daß wenigstens einige der Salzstöcke der Außenkarpatenzone aquitanisches Alter hätten, kann nicht mehr gestützt werden, da jener Zeitabschnitt durch einen Feuchtigkeitsüberschuß gekennzeichnet wird, der die Bildung der Kohlen im Petroeni- und Almacs-Becken bewirkte. Das ganze miozäne Salz Rumäniens ist somit tortonischen Alters und gehört einem einzigen Horizont an.
The Miocene rock-salt is to be found in Rumania in two big tectonic unities: in the Transylvanic Basin and in the outer zone of the Carpathians (during the Miocene the region of the Maramures-Basin belonged to the Transylvanic Basin as well). In the interior of the Carpathian bend which contained a large lagoon, the salt sediments are characterized by the following qualities: scarce occurrence of dolomitic schists, small amount of pure gypsum, presence of rock-salt in the form of a continuous stratum with an average thickness of hundreds of metres which extends over 15.000 km2; lack of potassium salt. The outer zones of the Carpathians formed a small intermediary lagoon some tens of km large, and they are characterized by the following qualities: large amount of dolomitic schists, very much gypsum mixed with clay, isolated stocks of rock-salt and small quantities of potassium salt. The distribution of the salt proves that the joining of the Ocean and the Transylvanic Lagoon took place in the region of the Eastern Carpathians and not through the Mures-Graben as was formerly supposed. Therefore the middle Donau sinking which once was a continent does not contain any salts. In the interior of the Transylvanic Basin there was a circular current: the Ocean water came along the Eastern Carpathians where the difficultly soluble salts were deposited, into the interior basin. Here the NaCl deposits were formed. The water then streamed with the K- and Mg-salts through the Olt-Strait out of the basin back into the Ocean. The geological salt reserves in the Transylvanic Basin are at least 150 times as big as in the outer zones of the Carpathians. The ancient thesis that at least some of the salt stocks of the outer Carpathian zone are of aquitanian age cannot be maintained any longer, that period being characterized by a surplus of humidity which brought about the coal (carbonaceous rocks) in the Petroseni- and Almas-Basin. The entire Miocene salt of Rumania is therefore of tortonic age and belongs to one horizon.

Résumé En Roumanie le sel miocène apparaît dans deux grandes unités tectoniques: le Bassin de Transylvanie et la zone externe de la chaîne carpatique. La première région, qui représentait une unité de sédimentation, comprenait le bassin du Maramure aussi. La grande pénurie des schistes dolomitiques, la quantité très réduite de gypse, pur pourtant, la présence du sel sous la forme d'une couche continue à épaisseur moyenne de centaines de mètres sur une surface de 15.000 Km2 environ, le manque des sels de potassium — ce sont là des caractéristiques des dépôts salins à l'intérieur de l'arc carpatique où il y avait une énorme lagune. Les zones extérieures des Carpates représentaient un complexe de petites lagunes intermédiaires dont la largeur atteignait à des dizaines de Km. Celles-ci se caractérisent par l'abondance des schistes dolomitiques, par l'énorme quantité de gypse que la présence de l'argile rend impur, par les massifs de sel isolés et par de petites quantités de sels de potassium. C'était la région de courbure des Carpates Orientales qui reliait les deux grandes unités de sédimentation et l'Océan planétaire. L'estimation des réserves géologiques relèvent dans le bassin de Transylvanie des quantités de sel d'au moins 150 fois supérieures à celles de l'extérieur des Carpates. L'opinion qui attribuait, au moins à certains massifs de sel de la zone extérieure des Carpates, un âge aquitanien n'est plus soutenable, cette époque se caractérisant par ce même excès d'humidité qui avait déterminé la formation des charbons dans les bassins de Petroeni et Alma. Il est donc évident que tout le sel miocène de Roumanie a un âge tortonien et appartient à un seul horizon.

: 1) 2) . . - .


Vorkommen von Gips sind auch im Eozän des nördlichen Transsylvanischen Beckens bekannt, und Anhydrit wurde in den Bohrungen gefunden, welche die Untertrias im Grundgebirge der Unteren Donauebene erreichten.  相似文献   
27.
Résumé La structure géologique des Monts Apuseni a résulté de la superposition des édifices hercyniens et carpatiques. Pendant l'orogenèse hercynienne l'on constate la manifestation du métamorphisme comme générateur des plissements ayant comme résultat la formation de la métanappe Gilu-Trascu. La tectonique des Monts Apuseni s'est développée pendant diverses phases orogéniques, chaque phase ayant des particularités hercyniennes transmises par voie héréditaire auxquelles se sont ajoutés des caractères nouveaux. La phase mésocrétacée est caractérisée par la tectonique gravitationnelle, qui a généré la nappe des Monts Métallifères. Pendant la phase laramienne ont dominé les charriages septentrionaux et les nappes superposées Codru-Bihor. Les lignes rupturales d'âge récent ont imprimé aux Monts Apuseni le caractère d'une tectonique cassante et ont généré des bassins de sédimentation qui ont été accompagnés d'importantes manifestations volcaniques.
The Apuseni Mountains represent one of the three Carpathian ranges of Romania. The geological structure of these mountains is due to the superposition of the Hercynian and Carpathian foldings. During the Hercynian orogenesis, the manifestation of metamorphism as generator of folding (metaorogenesis) was stated, bringing forth the metanappe Gilu-Trascau. The Hercynian foldings have influenced the heredity of the Carpathian system of foldings. The structural plan of the Permo-Mesozoical sedimentary zones corresponds to the Hercynian realm, which showed constantly the tendency of subsidence and formation of grabens with different facies evolution. The tectonics of Apuseni Mountains developped during different orogenic phases, each of which shows hereditary characters to which new features were added. Thus, the midle Cretaceous phase is characterized by gravitational tectonics, and the nappe of the Metalliferous Mountains, was formed in this phase by sliding. During the Laramian phase the northward overthrusts and the superposed nappes of Codru-Bihor have dominated. The young ruptural lines in the Apuseni Mountains generated Tertiary sedimentary basins, which were accompanied by important volcanic manifestations.

Zusammenfassung Das Apuseni-Gebirge bildet eine der drei Zweige der rurnänischen Karpaten. Ihr geologischer Bau ist das Ergebnis der überlagerung der herzynischen und der karpatischen Faltungsbewegungen. Während der herzynischen Orogenese erwies sich der Metamorphismus als Hauptfaktor der Faltung (Metaorogenese). Infolge dieser Faltung entstand die Gilu-Trascu-Metadecke. Die herzynischen Faltungsbewegungen haben die karpatischen Faltungen erheblich beeinflußt. Die Struktur der permo-mesozoischen Ablagerungen entspricht dem herzynischen Bau. Dieser zeichnet sich durch eine fortwährende Absenkung und durch Grabengliederung mit je verschiedenartigen Faziesentwicklungen aus. Der Bau des ApuseniGebirges hat sich während mehrerer orogener Phasen vollendet. Jede Phase hat der Gesamtstruktur ihre Eigentümlichkeit überprägt und neue, besondere Züge hinzugefügt. Während der mittelkretazischen Bewegungen verursachte die Belastungstektonik die Entstehung der Abscherungs- und Gleitdecken des Erzgebirges. Während der laramischen Bewegungen herrschten die nordwärts gerichteten Verschiebungen und die übereinandergelegten Decken des Kodru- und BihorGebirges vor. Jungtertiäre Verwerfungsbewegungen haben im Apuseni-Gebirge die Entstehung von Einbruchsbecken bedingt, die von einer regen vulkanischen Tätigkeit begleitet wurde.

, , — . . , —. . .
  相似文献   
28.
29.
Mircea Buza 《GeoJournal》1997,41(1):85-91
All of the General Geomorphological Map of Romania on the medium scale of 1:200,000, with 50 sheets was elaborated in the Institute of Geography during the 1976--1990 period. A new general geomorphological map, this time on a large scale -- 1:25,000 and 1:50,000 -- is being worked out since 1991. The legend of the last two maps lists 250 geomorphological elements, grouped by ten large categories: 1. geological substrate; 2.denudational relief; 3. fluviatile relief; 4. lacustrine and marine relief; 5. glacial and periglacial relief; 6. karst relief; 7. eolian relief; 8. volcanic relief; 9. structural relief and, 10. anthropic relief. The general geomorphological maps of Romania on large scale (1:25,000 and 1:50,000) are accompanied by two auxiliary maps, i.e. a map of relief units and a morphostructural map, as well as by three geomorphological cross-sections. These show, beside landforms and geological structure, also rock composition and inclination of the strata. As an illustration, there is Zlatna sheet, on the scale of 1:25,000, which covers an area situated in the south-eastern part of the Romanian Western Carpathians (Apuseni Mountains). The work expounds on the location, division of the relief, relief energy and landforms, rock structure and make-up, current modelling processes, terraces, minor channel-beds, distribution of volcanic funnels and anthropic relief.  相似文献   
30.
Seismicity patterns that characterize the seismic regime of the Vrancea intermediate-depth earthquakes are investigated using an earthquake catalogue extending from 1974 to 1998. The analysis is made separately on two characteristic segments of the subducted plate (active zones) which hosted the major earthquakes of 4 March 1977, 30 August 1986 and 30 May 1990. Precursory anomalies preceding the occurrence of the major shock of 1986 (Mw = 7.3) in the lower part of the subducted slab are outlined when analyzing the time variation of the parameter (defined as the ratio of small to moderate events in a given active zone and a given time interval) and of the fractal dimension of the earthquake space distribution. Nothing similar is noticed in the upper part of the Vrancea slab. The analyzed time interval covering 25 years shows that, in contrast to previous studies, the statistical fluctuations of the parameter, computed for a time window of 5 months, appear to be too large to be considered as precursory anomalies. Significant differences among characteristic depth segments are also outlined in the frequency–magnitude distribution and are possibly related to differences in the physical mechanism of the earthquake generation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号