首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
大气科学   12篇
地质学   1篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2011年   2篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
11.
Introduction to the TAC special issue: The RegCNET network   总被引:2,自引:0,他引:2  
Summary Fostering climate research in economically developing nations (EDNs) is especially important because the welfare and economies of these nations are particularly dependent on climate and its variability. A critical factor that undermines the advancement of research in EDNs is that many EDN scientists are confronted with scientific isolation and lack of exposure to state-of-the-art research methodologies. One of the means to ameliorate this problem is to build “south–south” (i.e. EDN–EDN) and “north–south” (i.e. EDN–EAN, or economically advanced nations) research partnerships, which become more effective when they are based on collaborative projects where the participants share their respective expertise. This is the central paradigm underlying the formation of the REGional Climate research NETwork, or RegCNET.  相似文献   
12.
The Caspian Sea is the largest enclosed body of water on earth, covering approximately 4×105 km2 and sharing its coast with five countries (Iran, Azerbaijan, Kazakhstan, Russia and Turkmenistan). Because it has no outlet to the ocean the Caspian Sea level (CSL) has undergone rapid shifts in response to climatic forcings, and these have been devastating for the surrounding countries. In this paper we present the initial results of a modeling effort aimed at building a regional climate model for the Caspian Sea basin suitable to study the response of the CSL to interdecadal climate variability and anthropogenic climate change. Simulations are performed using the International Centre for Theoretical Physics (ICTP) regional climate model RegCM at a 50 km grid spacing for the period 1948–1990. During this period an abrupt shift occurred in the sea level after 1977, when the CSL rose about two meters until the early 1990s. Using a simple equation of hydrologic balance for the Caspian Sea basin to predict the CSL, we show that the model is able to reproduce the observed CSL changes at interannual to multidecadal scales. The correlation coefficient between the simulated and observed annual CSL changes is 0.91 and the model is able to reproduce the abrupt shift in CSL which occurred after 1977. Analysis of the climatologies before and after 1977 indicate that the CSL rise was mostly due to an increase in precipitation over the northern basin and a decrease in evaporation over the sea, primarily during the warm season. We plan to apply our model to the investigation of the response of the CSL to anthropogenic climate forcings.  相似文献   
13.
A modified Thornthwaite Climate Classification is applied to a 32-member ensemble of CMIP5 GCMs in order to 1) evaluate model performance in the historical climate and 2) assess projected climate change at the end of the 21 s t century following two greenhouse gas representative concentration pathways (RCP4.5 and RCP8.5). This classification scheme differs from the well-known Köppen approach as it uses potential evapotranspiration for thermal conditions, a moisture index for moisture conditions, and has even intervals between climate classes. The multi-model ensemble (MME) reproduces the main spatial features of the global climate reasonably well, however, in many regions the climate types are too moist. Extreme climate types, such as those found in polar and desert regions, as well as the cool- and cold-wet types of eastern North America and the warm and cool-moist types found in the southern U.S., eastern South America, central Africa and Europe are reproduced best by the MME. In contrast, the cold-dry and cold-semiarid climate types characterizing much of the high northern latitudes and the warm-wet type found in parts of Indonesia and southeast Asia are poorly represented by the MME. Regionally, most models exhibit the same sign in moisture and thermal biases, varying only in magnitude. Substantial changes in climate types are projected in both the RCP4.5 and RCP8.5 scenarios. Area coverage of torrid climate types expands by 11 % and 19 % in the RCP4.5 and RCP8.5 projections, respectively. Furthermore, a large portion of these areas in the tropics will experience thermal conditions which exceed the range of historical values and fall into a novel super torrid climate class. The greatest growth in moisture types in climate zones is among those with dry climates (moisture index values < 0) with increased areas of more than 8 % projected by the RCP8.5 MME.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号