首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   38篇
  国内免费   9篇
测绘学   17篇
大气科学   51篇
地球物理   143篇
地质学   285篇
海洋学   69篇
天文学   82篇
综合类   2篇
自然地理   48篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   14篇
  2019年   15篇
  2018年   22篇
  2017年   27篇
  2016年   31篇
  2015年   35篇
  2014年   34篇
  2013年   42篇
  2012年   33篇
  2011年   43篇
  2010年   56篇
  2009年   53篇
  2008年   38篇
  2007年   51篇
  2006年   28篇
  2005年   27篇
  2004年   25篇
  2003年   14篇
  2002年   12篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1959年   1篇
  1952年   1篇
排序方式: 共有697条查询结果,搜索用时 343 毫秒
121.
ABSTRACT

This paper details a new boresight calibration method for multibeam echo sounder systems This method is based on an automatic data selection algorithm, followed by a boresight least squares adjustment This method, called MIBAC (MultiBeam-IMU Boresight Automatic Calibration), takes in input overlapping survey strips following a simple line pattern over a regular slope. We first construct a boresight error observability criterion, used to select automatically the most sensitive soundings to boresight errors. From these soundings, we perform a 3D adjustment of the boresight angle, thus taking into account the coupling between angles. From a statistical analysis of the adjustment results, we derive the boresight angle precision. Numerical results obtained with four different multibeam echo sounder systems are presented and compared to those of a patch test calibration method. Finally, we demonstrate the performances of MIBAC through a standard deviation along the surface normal approach computed by principal component analysis.  相似文献   
122.
The oriented chains of nanoscale Fe-oxide particles produced by magnetotactic bacteria are a striking example of biomineralization. Several distinguishing features of magnetite particles that comprise bacterial magnetosomes have been proposed to collectively constitute a biosignature of magnetotactic bacteria (Thomas-Keprta et al., 2001). These features include high crystallinity, chemical purity, a single-domain magnetic structure, well-defined crystal morphology, and arrangement of particles in chain structures. Here, we show that magnetite derived from the inorganic breakdown of nanocrystalline goethite exhibits magnetic properties and morphologies remarkably similar to those of biogenic magnetite from magnetosomes. During heating in reducing conditions, oriented nanogoethite aggregates undergo dehydroxylation and transform into stoichiometric magnetite. We demonstrate that highly crystalline single-domain magnetite with euhedral grain morphologies produced abiogenically from goethite meets several of the biogenicity criteria commonly used for the identi?cation of magnetofossils. Furthermore, the suboxic conditions necessary for magnetofossil preservation in sediments are conducive to the reductive alteration of nanogoethite, as well as the preservation of detrital magnetite originally formed from goethite. The findings of this study have potential implications for the identification of biogenic magnetite, particularly in older sediments where diagenesis commonly disrupts the chain structure of magnetosomes. Our results indicate that isolated magnetofossils cannot be positively distinguished from inorganic magnetite on the basis of their magnetic properties and morphology, and that intact chain structures remain the only reliable distinguishing feature of fossil magnetosomes.  相似文献   
123.
Borehole fluid injections are accompanied by microseismic activity not only during but also after termination of the fluid injection. Previously, this phenomenon has been analysed, assuming that the main triggering mechanism is governed by a linear pressure diffusion in a hydraulically isotropic medium. In this context the so‐called back front of seismicity has been introduced, which allows to characterize the hydraulic transport from the spatiotemporal distribution of post‐injection induced events. However, rocks are generally anisotropic, and in addition, fluid injections can strongly enhance permeability. In this case, permeability becomes a function of pressure. For such situations, we carry out a comprehensive study about the behaviour and parametrization of the back front. Based on a model of a factorized anisotropic pressure dependence of permeability, we present an approach to reconstruct the principal components of the diffusivity tensor. We apply this approach to real microseismic data and show that the back front characterizes the least hydraulic transport. To investigate the back front of non‐linear pore‐fluid pressure diffusion, we numerically consider a power‐law and an exponential‐dependent diffusivity. To account for a post‐injection enhanced hydraulic state of the rock, we introduce a model of a frozen (i.e., nearly unchanged after the stimulation) medium diffusivity and generate synthetic seismicity. We find that, for a weak non‐linearity and 3D exponential diffusion, the linear diffusion back front is still applicable. This finding is in agreement with microseismic data from Ogachi and Fenton Hill. However, for a strong non‐linear fluid–rock interaction such as hydraulic fracturing, the back front can significantly deviate from a time dependence of a linear diffusion back front. This is demonstrated for a data set from the Horn River Basin. Hence, the behaviour of the back front is a strong indicator of a non‐linear fluid–rock interaction.  相似文献   
124.
Abstract

Quality is key to ensuring that the potential offered by weather radar networks is realized. To achieve optimum quality, a comprehensive radar data quality management system, designed to monitor the end-to-end radar data processing chain and evaluate product quality, is being developed at the UK Met Office. Three contrasting elements of this system are described: monitoring of key radar hardware performance indicators; generation of long-term integrations of radar products; and monitoring of radar reflectivity factor using synthesized observations from numerical weather prediction model fields. Examples of each component are presented and ways in which the different types of monitoring information have been used to both identify issues with the radar product data quality and help formulate solutions are given.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Harrison, D., Georgiou, S., Gaussiat, N., and Curtis, A., 2013. Long-term diagnostics of precipitation estimates and the development of radar hardware monitoring within a radar product data quality management system. Hydrological Sciences Journal, 59 (7), 1327–1342. http://dx.doi.org/10.1080/02626667.2013.841316  相似文献   
125.
Janus and Epimetheus are famously known for their distinctive horseshoe-shaped orbits resulting from a 1:1 orbital resonance. Every 4 years these two satellites swap their orbits by a few tens of kilometers as a result of their close encounter. Recently Tiscareno et al. (Tiscareno, M.S., Thomas, P.C., Burns, J.A. [2009]. Icarus 204, 254-261) have proposed a model of rotation based on images from the Cassini orbiter. These authors inferred the amplitude of rotational librational motion in longitude at the orbital period by fitting a shape model to Cassini ISS images. By a quasi-periodic approximation of the orbital motion, we describe how the orbital swap impacts the rotation of the satellites. To that purpose, we have developed a formalism based on quasi-periodic series with long- and short-period librations. In this framework, the amplitude of the libration at the orbital period is found proportional to a term accounting for the orbital swap. We checked the analytical quasi-periodic development by performing a numerical simulation and find both results in good agreement. To complete this study, the results obtained for the short-period librations are studied with the help of an adiabatic-like approach.  相似文献   
126.
127.
Abstract

This paper aims at revisiting the use of non-dimensional representations for catchment change and model robustness analysis. As well as being helpful for catchment classification according to hydroclimatic conditions, the Turc-Budyko representation enables visualization of temporal changes in these conditions and/or modification of the hydrological behaviour of the catchment. This brings a new perspective to hydrological analysis, different from the classical time series plots, which helps when interpreting catchment functioning with respect to hydroclimatic constraints. These tools do not require statistical analyses of observed series and are therefore very simple to implement. Four case studies are considered here to illustrate the use of the Q/P = f(P/Ep) graph. When combined with the inter-annual Turc-Mezentsev formula, this visual framework enables anticipation of potential difficulties for models based on the same hypotheses, solely using the analysis of observed data.  相似文献   
128.
129.
Double sandbar systems are common morphological features along sandy, wave‐dominated, micro‐ to meso‐tidal coastlines. In the companion paper, we demonstrated how various alongshore inner‐bar rip‐channel patterns can develop through morphological coupling to an alongshore‐variable outer bar. The simulated coupling patterns are, however, scarcely observed in the field. Instead, inner‐bar rip channels more often possess remarkably smaller and more variable alongshore length scales, suggesting that coupling mechanisms do not play a substantial role in the overall double‐sandbar dynamics. Here we use a numerical model to show that the relative importance of self‐organization and morphological coupling changes in favour of the latter with an increase in waterdepth variability along the outer‐bar crest. Furthermore, we find that the typical alongshore variability in inner‐bar rip‐channel scale is indicative of a mixture of self‐organization and morphological coupling rather than self‐organization alone. Morphological coupling may thus be more important to understanding and predicting the evolution of inner‐bar rip channels than previously envisaged. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   
130.
Sieving samples for chironomid analysis with a 150 μm mesh was shown to greatly reduce sample preparation time, and use of only larger specimens did not affect chironomid-inferred salinities in African lakes. Here, we tested if this method is suitable for temperature reconstruction in colder lakes at higher latitudes. Removal of specimens <150 μm in two training sets, one from Canada and one from Sweden, had little impact on the performance statistics of the calibration models. Chironomid abundance, however, decreased greatly because more than half of the head capsules in assemblages were <150 μm. This had major impacts on the temperature reconstructions. Inferences were on average 2°C warmer with the modified models (all specimens >150 μm) than those obtained with the full model (all specimens >100 μm). General patterns of temperature change were also altered. For Lake 7 on Southampton Island, Canada, a cooling trend was reconstructed with the full Canadian model while the modified Canadian model yielded a warming trend. When only specimens >150 μm were used, two to three times more wet sediment was needed to obtain a sufficient number of head capsules. These results indicate that, in cold lakes (mean July/August air temperature ≤11°C), large proportions of head capsules are <150 μm, and sieving the samples in a 150 μm mesh leads to altered temperature reconstructions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号