首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   29篇
  国内免费   4篇
测绘学   31篇
大气科学   50篇
地球物理   152篇
地质学   337篇
海洋学   56篇
天文学   78篇
自然地理   38篇
  2024年   1篇
  2023年   7篇
  2021年   13篇
  2020年   14篇
  2019年   10篇
  2018年   28篇
  2017年   14篇
  2016年   27篇
  2015年   27篇
  2014年   32篇
  2013年   46篇
  2012年   40篇
  2011年   46篇
  2010年   47篇
  2009年   68篇
  2008年   51篇
  2007年   28篇
  2006年   32篇
  2005年   34篇
  2004年   34篇
  2003年   29篇
  2002年   30篇
  2001年   15篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有742条查询结果,搜索用时 15 毫秒
561.
A simplified coupled ocean–atmosphere model, consisting of a one-layer bidimensional ocean model and a one-layer unidimensional energy balance atmospheric model [J. Clim. 13 (2000) 232] is used to study the unstable interactions between zonal winds and ocean gyres. In a specific range of parameters, decadal variability is found. Anomalies, quite homogeneous zonally, show small-scale wavelength in latitude: perturbations emerge and grow at the southern limb of the intergyre boundary and propagate southward before decaying. The wind stress anomalies are proportional to the meridional gradient of the atmospheric temperature anomalies: this ratio acts as a positive amplification factor, as confirmed by a parameter sensitivity analysis. Assuming zonally-averaged anomalies harmonic in the meridional direction, a very simple analytical model for the perturbations is derived, based on forced Rossby wave adjustment of the western boundary current and its associated anomalous heat transport: it accounts for the scale selection, the growth and the southward propagation of sea surface temperature anomalies in the subtropical gyre. The latter is not only due to the slow advection by the mean current, but to a prevailing mechanism of self-advecting coupled oceanic and atmospheric waves, out of phase in latitude. Relevance to the observational record is discussed.  相似文献   
562.
The study investigated the processes involved in metolachlor transport in two artificially drained, structured soils in eastern France. Measured losses of bromide and metolachlor in drainage water were compared with results simulated by the mechanistic, stochastic AgriFlux model. Simulated drainage water volumes were generally similar to the measured volumes when the spatial variability of the soil water properties was taken into account. When such variability was disregarded, cumulative water volumes of the clay soil were over- or underestimated by more than 20%. Two types of adsorption were tested. For instantaneous, reversible adsorption, using the partition coefficient Koc, metolachlor losses were underestimated in the first drainage water volumes and overestimated for the total study period. The use of slow adsorption and desorption kinetics (ADK) produced an export pattern similar to the observed one. A sensitivity analysis indicated that the simulated results are very sensitive to the values of the ADK rates, especially for the silty loam soil. The effect of ADK on the attenuation of metolachlor exports was more significant than the effect of degradation (2.3 and 6.7 times higher for the clay and silty loam soils, respectively). For the same four-month period, the bromide and metolachlor losses (using ADK) in the clay soil were 2.1 and 1.3 times greater, respectively, if the macroporosity was set at 10% than if it was not simulated. Conversely, macroporosity did not significantly affect these losses in the silty loam. The main factors involved in the metolachlor transport in the studied soils were: (i) the macroporosity, especially in the clay soil because of the low hydraulic conductivity of the matrix and (ii) the sorption kinetics rates which varied according to the soil physico-chemical characteristics.  相似文献   
563.
The Roer Valley Rift System (RVRS) is located between the West European rift and the North Sea rift system. During the Cenozoic, the RVRS was characterized by several periods of subsidence and inversion, which are linked to the evolution of the adjacent rift systems. Combination of subsidence analysis and results from the analysis of thickness distributions and fault systems allows the determination of the Cenozoic evolution and quantification of the subsidence. During the Early Paleocene, the RVRS was inverted (Laramide phase). The backstripping method shows that the RVRS was subsequently mainly affected by two periods of subsidence, during the Late Paleocene and the Oligocene–Quaternary time intervals, separated by an inversion phase during the Late Eocene. During the Oligocene and Miocene periods, the thickness of the sediments and the distribution of the active faults reveal a radical rotation of the direction of extension by about 70–80° (counter clockwise). Integration of these results at a European scale indicates that the Late Paleocene subsidence was related to the evolution of the North Sea basins, whereas the Oligocene–Quaternary subsidence is connected to the West European rift evolution. The distribution of the inverted provinces also shows that the Early Paleocene inversion (Laramide phase) has affected the whole European crust, whereas the Late Eocene inversion was restricted to the southern North Sea basins and the Channel area. Finally, comparison of these deformations in the European crust with the evolution of the Alpine chain suggests that the formation of the Alps has controlled the evolution of the European crust since the beginning of the Cenozoic.  相似文献   
564.
565.
In global navigation satellite system (GNSS) receivers, the first signal processing stage is the acquisition, which consists of detecting the received GNSS signals and determining the associated code delay and Doppler frequency by means of correlations with a code and carrier replicas. These codes, as part of the GNSS signal, were chosen to have very good correlation properties without considering the effect of a potential received Doppler frequency. In the literature, it is often admitted that the maximum GPS L1 C/A code cross-correlation is about ?24 dB. We show that this maximum can be as high as ?19.2 dB when considering a Doppler frequency in a typical range of [?5, 5] kHz. We also show the positive impact of the coherent integration time on the cross-correlation and that even a satellite with Doppler outside the frequency search space of a receiver impacts the cross-correlation. In addition, the expression of the correlation is often provided in the continuous time domain, while its implementation is typically made in the discrete domain. It is then legitimate to ask the validity of this approximation. Therefore, the purpose of this research is twofold: First, we discuss typical approximations and evaluate their regions of validity, and second, we provide characteristic values such as maximums and quantiles of the auto- and cross-correlation of the GPS L1 C/A and Galileo E1 OS codes in the presence of Doppler, for frequency ranges up to 50 kHz and for different integration times.  相似文献   
566.
567.
Marine Geophysical Research - The present study is focused on the so-called High Temprature Reaction Zone of the Oman ophiolite, a thin zone located between the roots of the sheeted dyke complex...  相似文献   
568.
Guy  Boucher 《Marine Ecology》1990,11(2):133-146
Abstract. Revision of published data on species diversity of marine nematode assemblages indicated significantly higher values in temperate coastal sediments than in tropical open sea and lagoonal sublittoral sediments of similar depth. The influence of sample size, mean grain size, latitude. degree of isolation and stability of the system arc discussed for 112 temperate samples and 85 tropical samples from 23 localities around the world.  相似文献   
569.
In the Eastern Mediterranean, offshore Egypt, the Nile continental margin is characterized by a large deep water turbiditic system known as the Nile Deep Sea Fan. This post-Miocene terrigenous construction covers an approximately 10 km-thick sedimentary pile, including 1–3 km of Messinian salt layers. Systematically collected swath bathymetric data proved to be the most powerful tool to discover, describe and study many sea floor features of this sedimentary construction which reflects competition between active tectonic, sedimentary, and geochemical processes. Gravity tectonics, triggered by underlying mobile salt layers, construction of channel-levee systems, the passage of turbidite flows, sedimentary slope failures at various scales, massive mud expulsions and fluid seepages are all interfering to shape the Nile Deep Sea Fan seabed.  相似文献   
570.
This paper presents an original size-structured mathematical model of the energy flow through marine ecosystems, based on established ecological and physiological processes and mass conservation principles. The model is based on a nonlocal partial differential equation which represents the transfer of energy in both time and body weight (size) in marine ecosystems. The processes taken into account include size-based opportunistic trophic interactions, competition for food, allocation of energy between growth and reproduction, somatic and maturity maintenance, predatory and starvation mortality. All the physiological rates are temperature-dependent. The physiological bases of the model are derived from the dynamic energy budget theory. The model outputs the dynamic size-spectrum of marine ecosystems in term of energy content per weight class as well as many other size-dependent diagnostic variables such as growth rate, egg production or predation mortality.In stable environmental conditions and using a reference set of parameters derived from empirical studies, the model converges toward a stationary linear log–log size-spectrum with a slope equal to −1.06, which is consistent with the values reported in empirical studies. In some cases, the distribution of the largest sizes departs from the stationary linear solution and is slightly curved downward. A sensitivity analysis to the parameters is conducted systematically. It shows that the stationary size-spectrum is not very sensitive to the parameters of the model. Numerical simulations of the effects of temperature and primary production variability on marine ecosystems size-spectra are provided in a companion paper [Maury, O., Shin, Y.-J., Faugeras, B., Ben Ari, T., Marsac, F., 2007. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: simulations. Progress in Oceanography, doi:10.1016/j.pocean.2007.05.001].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号