首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   29篇
  国内免费   4篇
测绘学   31篇
大气科学   50篇
地球物理   152篇
地质学   337篇
海洋学   56篇
天文学   78篇
自然地理   38篇
  2024年   1篇
  2023年   7篇
  2021年   13篇
  2020年   14篇
  2019年   10篇
  2018年   28篇
  2017年   14篇
  2016年   27篇
  2015年   27篇
  2014年   32篇
  2013年   46篇
  2012年   40篇
  2011年   46篇
  2010年   47篇
  2009年   68篇
  2008年   51篇
  2007年   28篇
  2006年   32篇
  2005年   34篇
  2004年   34篇
  2003年   29篇
  2002年   30篇
  2001年   15篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有742条查询结果,搜索用时 31 毫秒
591.
Sand spits with distal hooks have been well documented from coasts with low to moderate tidal ranges, unlike high tidal-range environments. Datasets from 15 LiDAR and 3 UAV surveys between 2009 and 2019 on the Agon spit in Normandy (France), a setting with one of the largest tidal ranges in the world (mean spring tidal range: 11 m), combined with in-situ hydrodynamic records between 2013 and 2017, highlight a three-stage pattern of spit hook evolution. Stage 1 (2009–2013) commenced with the onshore migration and attachment of a swash bar, followed by persistent spit accretion updrift of the bar and erosion downdrift because of the slow speed of bar migration in this large tidal-range environment. In stage 2 (2013–2016), three overwash events and a 220 m-wide breach culminating in the total destruction of the spit during winter 2015–2016 involved the landward mobilization of thousands of cubic metres of sand. These events occurred during short durations (a few hours) when spring high tides coincided with relatively energetic waves, underscoring the importance of storms in rapid spit morphological change. Strong spring tidal currents maintained the breach. Stage 3 (2016–2019) has involved new hook construction through welding of a swash bar and spit longshore extension, highlighting the resilience of the spit over the 10-year period, and involving a positive sediment balance of 244 000 m3. The three stages bring out, by virtue of the temporal density of LiDAR and UAV data used, a high detail of spit evolution relative to earlier studies in this macrotidal setting. The large tidal range strongly modulates the role of waves and wave-generated longshore currents, the main process drivers of spit evolution, by favouring long periods of inertia in the course of the spring–neap tidal cycle, but also brief episodes of significant morphological change when storm waves coincide with spring high tides. © 2020 John Wiley & Sons, Ltd.  相似文献   
592.
Understanding the geological uncertainty of hydrostratigraphic models is important for risk assessment in hydrogeology. An important feature of sedimentary deposits is the directional ordering of hydrostratigraphic units (HSU). Geostatistical simulation methods propose efficient algorithm for assessing HSU uncertainty. Among different geostatistical methods to simulate categorical data, Bayesian maximum entropy method (BME) and its simplified version Markov-type categorical prediction (MCP) present interesting features. In particular, the zero-forcing property of BME and MCP can provide a valuable constrain on directional properties. We illustrate the ability of MCP to simulate vertically ordered units. A regional hydrostratigraphic system with 11 HSU and different abundances is used. The transitional deterministic model of this system presents lateral variations and vertical ordering. The set of 66 (11 × 12/2) bivariate probability functions is directly calculated on the deterministic model with fast Fourier transform. Despite the trends present in the deterministic model, MCP is unbiased for the HSU proportions in the non-conditional case. In the conditional cases, MCP proved robust to datasets over-representing some HSU. The inter-realizations variability is shown to closely follow the amount and quality of data provided. Our results with different conditioning datasets show that MCP replicates adequately the directional units arrangement. Thus, MCP appears to be a practical method for generating stochastic models in a 3D hydrostratigraphic context.  相似文献   
593.
Microstructure measurements were performed along two sections through the Halmahera Sea and the Ombai Strait and at a station in the deep Banda Sea. Contrasting dissipation rates (??) and vertical eddy diffusivities (K z ) were obtained with depth-averaged ranges of \(\sim [9 \times 10^{-10}-10^{-5}]\) W kg??1 and of \(\sim [1 \times 10^{-5}-2 \times 10^{-3}]\) m2 s??1, respectively. Similarly, turbulence intensity, \(I={\epsilon }/(\nu N^{2})\) with ν the kinematic viscosity and N the buoyancy frequency, was found to vary seven orders of magnitude with values up to \(10^{7}\). These large ranges of variations were correlated with the internal tide energy level, which highlights the contrast between regions close and far from internal tide generations. Finescale parameterizations of ?? induced by the breaking of weakly nonlinear internal waves were only relevant in regions located far from any generation area (“far field”), at the deep Banda Sea station. Closer to generation areas, at the “intermediate field” station of the Halmahera Sea, a modified formulation of MacKinnon and Gregg (2005) was validated for moderately turbulent regimes with 100 < I < 1000. Near generation areas marked by strong turbulent regimes such as “near field” stations within strait and passages, ?? is most adequately inferred from horizontal velocities provided that part of the inertial subrange is resolved, according to Kolmogorov scaling.  相似文献   
594.
This paper proposes a new approach for forecasting continuous indoor air quality time series and in particular the concentration of a common air pollutant in offices like formaldehyde. Forecasting is achieved through the combination of the spectral band decomposition using fast Fourier transform and nonlinear time series modeling. Two nonlinear models have been tested: a threshold autoregressive (TAR) model and a Chaos dynamics-based modeling. This study shows the benefit of the Fourier decomposition coupled with nonlinear modeling of each extracted component, compared to forecasting applied directly on the raw data. Both TAR and Chaos dynamics models are able to reproduce nonlinearities, with slightly better performance in the case of the second model. These hybrid models provide good performance on forecast time horizon up to 12 h ahead.  相似文献   
595.
Sediment connectivity characterizes the physical transfer of sediment through different geomorphic compartments in catchments due to sediment detachment, transport and deposition. Quantifying and modelling sediment connectivity is therefore a key prerequisite to improving our understanding of the dispersion of particle‐borne contaminants, especially in catchments exposed to highly erosive climates. The objective of this study is to provide novel insights into typhoon impacts on sediment connectivity from hillslopes to rivers. The dispersion of particle‐bound caesium‐137 (137Cs) was investigated in two coastal catchments draining the main contamination plume from the Fukushima Daiichi Nuclear Power Plant accident. Five sampling campaigns were carried out from November 2011 to November 2015, after each typhoon season. The spatial and temporal evolution of 137Cs contamination was investigated through the calculation of 137Cs enrichment ratios in sediment relative to nearby soils. Rainfall erosivity (EI30) associated with the main typhoons that occurred prior to each sampling campaign were computed, mapped, and finally used to improve a topographic‐based index of connectivity. From 2011 to 2015, mean contamination levels in Mano and Niida catchments decreased from 11.9 kBq kg?1 to 3.3 kBq kg?1 and from 34.1 kBq kg?1 to 8.0 kBq kg?1, respectively. Regional mean EI30 ranged from 262 MJ mm ha?1 h?1 for typhoon Jelawat (in 2012) to 1695 MJ mm ha?1 h?1 for typhoon Roke (in 2011). Typhoons Roke (2011) and Etau (2015) showed the highest connectivity from contaminated sources to the rivers, and induced a significant export of sediment to the ocean. In 2013 a slight increase in 137Cs levels in river sediments occurred, likely resulting from initial decontamination works and the occurrence of two consecutive typhoons. Importantly, this research provides new insights into the connectivity of the main sources of sediments contaminated with radiocaesium in Fukushima Prefecture and their temporal evolution, which will help with ongoing decontamination efforts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
596.
597.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   
598.
A set of high‐fidelity simulated asteroid materials, or simulants, was developed based on the mineralogy of carbonaceous chondrite meteorites. Three varieties of simulant were developed based on CI1 chondrites (typified by Orgueil), CM2 chondrites (typified by Murchison), and CR2/3 chondrites (multiple samples). The simulants were designed to replicate the mineralogy and physical properties of the corresponding meteorites and anticipated asteroid surface materials as closely as is reasonably possible for bulk amounts. The simulants can be made in different physical forms ranging from larger cobbles to fine‐grained regolith. We analyzed simulant prototypes using scanning electron microscopy, X‐ray fluorescence, reflectance spectroscopy at ambient conditions and in vacuum, thermal emission spectroscopy in a simulated asteroid environment chamber, and combined thermogravimetry and evolved gas analysis. Most measured properties compare favorably to the reference meteorites and therefore to predicted volatile‐rich asteroid surface materials, including boulders, cobbles, and fine‐grained soils. However, there were also discrepancies, and mistakes were made in the original mineral formulations that will be updated in the future. The asteroid simulants are available to the community from the nonprofit Exolith Lab at UCF, and the mineral recipes are freely published for other groups to reproduce and modify as they see fit.  相似文献   
599.
Benthic faunal activity and density play an important role in determining the rates of benthic nutrient fluxes, which enrich the water column and contribute to phytoplankton growth. The intensity of nutrient fluxes in the Bay of Brest depends on the density of the invasive gastropod, Crepidula fornicata. In order to study the impact of benthic fluxes on phytoplankton dynamics, realistic daily nutrient inputs simulating various densities of C. fornicata were added to six enclosures during three weeks. The increase in fertilization intensity influenced the phytoplankton biomass. A succession from Chaetoceros spp. to Pseudo-nitzschia spp. and Leptocylindrus danicus was observed in all enclosures, but the dynamics of successions were different. Pseudo-nitzschia spp. was favored in the three more fertilized enclosures, while Chaetoceros spp. persisted longer in less enriched enclosures. Despite an apparent nitrogen limitation, the quantum efficiency of PSII (Fv/Fm) was high (>0.5) and stable in all enclosures. The maximal photosynthetic capacity (PBmax) was also invariable and oscillated around an average value of 2.23 mg C (mg Chl a)−1 h−1. The stability of Fv/Fm and PBmax observed at different nutrient input intensities demonstrates that the daily inputs maintained the physiological balance of the microalgae. The maximal light utilization efficiency (α) and the light saturation parameter (Ek) were also quite stable after day 8, which reveals that photosynthetic parameters were driven by growth constraints due to nutrient availability and not by incident light or species successions. We suggest that our results correspond to an “Ek independent variation” regulation. We propose that such regulation of photosynthetic parameters appears when there are frequent nutrient additions which do not allow replete nutrient conditions to be reached but lead to physiological equilibrium.  相似文献   
600.
The Arcachon lagoon is a 156 km2 temperate mesotidal lagoon dominated by tidal flats (66% of the surface area). The methane (CH4) sources, sinks and fluxes were estimated from water and pore water concentrations, from chamber flux measurements at the sediment–air (low tide), sediment–water and water–air (high tide) interfaces, and from potential oxidation and production rate measurements in sediments. CH4 concentrations in waters were maximal (500–1000 nmol l−1) in river waters and in tidal creeks at low tide, and minimal in the lagoon at high tide (<50 nmol l−1). The major CH4 sources are continental waters and the tidal pumping of sediment pore waters at low tide. Methanogenesis occurred in the tidal flat sediments, in which pore water concentrations were relatively high (2.5–8.0 μmol l−1). Nevertheless, the sediment was a minor CH4 source for the water column and the atmosphere because of a high degree of anaerobic and aerobic CH4 oxidation in sediments. Atmospheric CH4 fluxes at high and low tide were low compared to freshwater wetlands. Temperate tidal lagoons appear to be very minor contributor of CH4 to global atmosphere and to open ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号