首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   28篇
  国内免费   5篇
测绘学   18篇
大气科学   60篇
地球物理   148篇
地质学   332篇
海洋学   50篇
天文学   92篇
自然地理   37篇
  2024年   1篇
  2023年   6篇
  2021年   12篇
  2020年   14篇
  2019年   9篇
  2018年   27篇
  2017年   16篇
  2016年   27篇
  2015年   26篇
  2014年   31篇
  2013年   41篇
  2012年   38篇
  2011年   45篇
  2010年   47篇
  2009年   60篇
  2008年   50篇
  2007年   32篇
  2006年   32篇
  2005年   33篇
  2004年   33篇
  2003年   30篇
  2002年   32篇
  2001年   14篇
  2000年   8篇
  1999年   6篇
  1998年   7篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   6篇
  1985年   1篇
  1984年   1篇
  1983年   6篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有737条查询结果,搜索用时 31 毫秒
61.
The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean–atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000 m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator.  相似文献   
62.
Crétat  Julien  Braconnot  Pascale  Terray  Pascal  Marti  Olivier  Falasca  Fabrizio 《Climate Dynamics》2020,55(9-10):2761-2784

The low-frequency evolution of Indian rainfall mean-state and associated interannual-to-decadal variability is discussed for the last 6000 years from a multi-configuration ensemble of fully coupled global transient simulations. This period is marked by a shift of Indian Summer Monsoon Rainfall (ISMR) distribution towards drier conditions, including extremes, and a contraction of the rainy season. The drying is larger in simulations with higher horizontal resolution of the atmosphere and revised land surface hydrology. Vegetation–climate interactions and the way runoff is routed to ocean modulate the timing of the monsoon onset but have negligible effects on the evolution of seasonal rainfall amounts in our modeling framework in which carbon cycling is always active. This drying trend is accompanied by changes in ISMR interannual-to-decadal variability decreasing over north and south India but increasing over central India (20°–25° N). The ISMR interannual-to-decadal variability is decomposed into six physically consistent regimes using a clustering technique to further characterize its changes and associated teleconnections. From 6 to 3.8 kyr bp, the century-to-century modulations in the frequency of occurrence associated to the regimes are asynchronous between the simulations. Orbitally-driven trends can only be detected for two regimes over the whole 6–0 kyr bp period. These two regimes reflect increased influence of ENSO on both ISMR and Indian Ocean Dipole as the inter-hemispheric energy gradient weakens. Severe long-term droughts are also shown to be a combination of long-term drying and internally generated low-frequency modulations of the interannual-to-decadal variability.

  相似文献   
63.
64.
 We have developed a new method to accelerate tracer simulations to steady-state in a 3-D global ocean model, run off-line. Using this technique, our simulations for natural 14C ran 17 times faster when compared to those made with the standard non-accelerated approach. For maximum acceleration we wish to initialize the model with tracer fields that are as close as possible to the final equilibrium solution. Our initial tracer fields were derived by judiciously constructing a much faster, lower-resolution (degraded), off-line model from advective and turbulent fields predicted from the parent on-line model, an ocean general circulation model (OGCM). No on-line version of the degraded model exists; it is based entirely on results from the parent OGCM. Degradation was made horizontally over sets of four adjacent grid-cell squares for each vertical layer of the parent model. However, final resolution did not suffer because as a second step, after allowing the degraded model to reach equilibrium, we used its tracer output to re-initialize the parent model (at the original resolution). After re-initialization, the parent model must then be integrated only to a few hundred years before reaching equilibrium. To validate our degradation-integration technique (DEGINT), we compared 14C results from runs with and without this approach. Differences are less than 10‰ throughout 98.5% of the ocean volume. Predicted natural 14C appears reasonable over most of the ocean. In the Atlantic, modeled Δ14C indicates that as observed, the North Atlantic Deep Water (NADW) fills the deep North Atlantic, and Antartic Intermediate Water (AAIW) infiltrates northward; conversely, simulated Antarctic Bottom Water (AABW) does not penetrate northward beyond the equator as it should. In the Pacific, in surface eastern equatorial waters, the model produces a north–south assymetry similar to that observed; other global ocean models do not, because their resolution is inadequate to resolve equatorial dynamics properly, particularly the intense equatorial undercurrent. The model’s oldest water in the deep Pacific (at −239‰) is close to that observed (−248‰), but is too deep. Surface waters in the Southern Ocean are too rich in natural 14C due to inadequacies in the OGCM’s thermohaline forcing. Received: 18 March 1997 / Accepted: 27 July 1997  相似文献   
65.
Fossil particle tracks and spallation-produced He and Ne in the Kenna ureilite indicate that it existed in space as a small object for 23 m.y. In our study of Kenna, we found no evidence of trapped He or Ne. Large amounts of heavy rare gases occur in Kenna in concentrations typical of ureilites. In a step-wise release of gases, the isotopic compositions of Kr and Xe were found to be constant above 600°C, revealing the presence of a single retentively sited component. The Xe isotopic abundances are characterized by 124:126:128:129:130:131:132:134:136 = 0.471:0.414:8.280:103.61: 16.296:81.92:100:37.70:31.23. This isotopic composition is distinct from AVCC (average carbonaceous chondritic), but similar to compositions known for some time in certain temperature fractions of Renazzo, Murray and Murchison. Kenna-type Xe appears to be one of the several components found in carbonaceous chondrites.

Binz et al. (Geochim. Cosmochim. Acta 39, 1576–1579, 1975) have recently found that many volatile trace elements are strongly depleted in ureilites. Thus, the relatively large amounts of heavy rare gases present in ureilites did not result from a mixture of a volatile-rich component with the ureilite host. It appears that some material rich in carbon and heavy rare gases was incorporated into a differentiated ureilite host. All current hypotheses which purport to explain the origin of trapped gases in meteorites encounter difficulty in accounting for trapped gases in ureilites in a straightforward manner.  相似文献   

66.
67.
Abstract— We report on studies of the concentrations of cosmogenic nuclides in the magnetic fraction of cosmic dust particles recovered from the South Pole Water Well (SPWW) and from Greenland. Our results confirm that cosmic dust material from these locations contains measurable amounts of cosmogenic nuclides. The Antarctic particles (and possibly those from Greenland as well) also contain minor amounts of solar Ne. Concentrations of cosmogenic nuclides are consistent with irradiation of this material as small objects in space, with exposure ages similar to the expected Poynting‐Robertson (P‐R) lifetimes of 50–200 kyr for particles 25–100 μm in size.  相似文献   
68.
Trace element distributions in the source waters of the Pacific Equatorial Undercurrent (EUC) show the existence of elevated total acid-soluble iron concentrations. This region has been suggested to contribute enough bioavailable iron to regulate interannual and interglacial variability in biological productivity downstream in the high-nitrate low-chlorophyll upwelling zone of the eastern equatorial Pacific. We investigated the advection and first-order biogeochemical impact of an imposed, data-based iron maximum in the western Pacific EUC using an ecosystem model forced by a global dynamical model. We imposed two source profiles of iron constrained by total acid-soluble iron measurements. Though the data for total acid-soluble iron included both dissolved and acid-soluble particulate iron species, we treated all of the total acid-soluble iron as if it was dissolved and bioavailable. A deeper (270 m) source was centered in the density horizon of the observed iron maximum and a shallower (180 m) source was located in the core of our model's EUC, where a dissolved iron maximum has been frequently postulated. These source runs were compared with a control run that contained no specific source of iron associated with the EUC. In the source runs elevated iron concentrations were simulated in the EUC across its entire zonal span, evident as a subsurface plume of dissolved iron slightly below the core of the EUC. In the control run there was no iron maximum associated with the EUC. Upwelling of iron-replete water in the central and eastern equatorial Pacific increased integrated primary productivity in the Wyrtki box (180°W:90°W, 5°S:5°N, 0:200 m) by 41% and 66% for the deeper and shallower iron perturbation, respectively. The source runs increased the realism of the zonal extent of HNLC conditions and the meridional distributions of biological productivity, relative to the control run. However, in the source simulations surface chlorophyll concentrations were too high by a factor of two and maximum surface nitrate concentrations were too low, relative to climatologies. The relative abundance of diatoms roughly doubled upon the input of additional iron, exceeding field observations. Though biogeochemical data are limited and we did not adjust parameters to optimize the model fits to observations, these results suggest that acid-soluble particulate iron supplied to the EUC in the western equatorial Pacific is unlikely to be entirely bioavailable.  相似文献   
69.
Haplognathia ruberrima is a cosmopolitan gnathostomulid species found in sulfur bacterial mats in mangroves in Guadeloupe (French West Indies). Haplognathia ruberrima presents a δ13C value lower than all measured meiofaunal grazers and lower than the available measured food sources of this environment. This low δ13C value can not be due to specific ingestion of 13C‐depleted methanogenic bacteria because abundances of those bacteria are reduced in surficial and deep sediments as revealed by δ13C of bacterial fatty acid. According to scanning electron microscope observations, no bacterial ectosymbionts were observed at the surface of the gnathostomulids, and transmission electron microscope views revealed the absence of bacterial endosymbionts. Energy‐dispersive X‐ray spectroscopy analysis detected low levels of sulfur (0.32%±0.8) in biological tissues of H. ruberrima, confirming the absence of thioautotrophic bacterial symbionts in these animals. Consequently, the low δ13C value of H. ruberrima can not be due to the presence of sulfur‐oxidizing symbionts but more probably to the selective and exclusive consumption of free‐living, sulfur‐oxidizing bacteria.  相似文献   
70.
Four similar sponges of different colors, all unknown to science, were collected in submarine caves of New Caledonia. We aimed at determining whether the four chromotypes represented different species or phenotypic variations of a unique new species. We used an integrative taxonomic approach combining morphologic, molecular and metabolomic analyses. The main traits that define these specimens are a skeleton made of monolophose, trilophose and tetralophose calthrops only, high chemical diversity and a high abundance and diversity of prokaryotic symbionts. The symbiotic community includes two unique prokaryote morphotypes, which are described for the first time in Homoscleromorpha, and appeared to be vertically transmitted. Although several features slightly differ among chromotypes, the most parsimonious conclusion was to propose a single new species Plakina kanaky sp. nov. Our phylogenetic analysis indicated the paraphyly of the Plakina genus, with P. kanaky sp. nov. belonging to a clade that includes Plakina jani and Plakina trilopha. The present work demonstrates that integrative taxonomy should be used in order to revise the entire Plakinidae family and especially the non‐monophyletic genus Plakina.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号