首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122863篇
  免费   1914篇
  国内免费   857篇
测绘学   3167篇
大气科学   8460篇
地球物理   23890篇
地质学   45000篇
海洋学   10590篇
天文学   27517篇
综合类   408篇
自然地理   6602篇
  2022年   695篇
  2021年   1170篇
  2020年   1291篇
  2019年   1468篇
  2018年   4576篇
  2017年   4177篇
  2016年   4184篇
  2015年   1845篇
  2014年   3281篇
  2013年   5750篇
  2012年   4105篇
  2011年   6075篇
  2010年   5443篇
  2009年   6768篇
  2008年   5805篇
  2007年   6166篇
  2006年   4523篇
  2005年   3512篇
  2004年   3427篇
  2003年   3284篇
  2002年   3183篇
  2001年   2676篇
  2000年   2584篇
  1999年   2110篇
  1998年   2146篇
  1997年   2048篇
  1996年   1730篇
  1995年   1709篇
  1994年   1479篇
  1993年   1375篇
  1992年   1266篇
  1991年   1304篇
  1990年   1273篇
  1989年   1184篇
  1988年   1050篇
  1987年   1225篇
  1986年   1080篇
  1985年   1322篇
  1984年   1545篇
  1983年   1418篇
  1982年   1369篇
  1981年   1257篇
  1980年   1136篇
  1979年   1069篇
  1978年   1068篇
  1977年   919篇
  1976年   877篇
  1975年   889篇
  1974年   840篇
  1973年   930篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
We examine a siphon-like mechanism for moving mass from the chromosphere to a gravitational well at the top of a magnetic loop to form a prominence. The calculations assume no apriori flow velocity at the loop base. Instead heating in the loop legs drives the flow. The prominence formation process requires two steps. First, the background heating rate must be reduced to on the order of 1 % of the initial heating rate required to maintain the coronal loop. This forms an initial condensation at the top of the loop. Second, the heating must take place only in the loop legs in order to produce a pressure differential which drives mass up into the well at the top of the loop. The heating rate in the loop must be increased once the prominence has begun to form or full prominence densities can not be achieved in a reasonable time. We conclude that this heating driven siphon-like mechanism is feasible for producing and maintaining prominences.  相似文献   
92.
In recent times it has been emphasized that the present kinematical structures of asteroid families should be evolved with respect to the original post-impact situations, according to numerical simulations performed taking into account also the previously neglected Yarkovsky effect. In this paper we show that also a “classical” approach based on an analysis of the current kinematical properties of families leads to conclude that the distributions of proper eccentricities and semimajor axes of family members exhibit evidence of an evolution. The importance of this approach is that it yields a fully independent and quantitative estimate of an evolutionary spreading of the proper elements. In particular, we find that the original post-impact families had to be on the average about twice more compact than the families we observe now, when considering family members down to about 5 km in size. This result can be used in future analyses to derive estimates of the ages of different families, and to better constrain the typical values of the ejection velocities of the fragments in family-forming events.  相似文献   
93.
The structure, functioning and hydrodynamic properties of aquifers can be determined from an analysis of the spatial variability of baseflow in the streams with which they are associated. Such analyses are based on simple low‐cost measurements. Through interpreting the hydrological profiles (Q = f(A)) it is possible to locate the aquifer(s) linked to the stream network and to determine the type of interrelated flow, i.e. whether the stream drains or feeds the aquifer. Using an analytical solution developed for situations with a positive linear relationship, i.e. where the baseflow increases linearly with increasing catchment size, it is also possible to estimate the permeability of the aquifer(s) concerned at catchment scale. Applied to the hard‐rock aquifers of the Oman ophiolite, this method shows that the ‘gabbro’ aquifer is more permeable than the ‘peridotite’ aquifer. As a consequence the streams drain the peridotites and ‘leak’ into the gabbro. The hydrological profiles within the peridotite are linear and positive, and indicate homogeneity in the hydrodynamic properties of these formations at the kilometre scale. The permeability of the peridotite is estimated at 5 · 10?7 to 5 · 10?8 m/s. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
94.
The supply rates of Na and K to the atmosphere of Mercury by processes acting on the extreme surface—thermal vaporization, photon-stimulated desorption (PSD), and ion-sputtering—are limited by the rates at which atoms can be supplied to the extreme surface by diffusion from inside the regolith grains. Supply rates to the atmosphere are further regulated by ion retention and by gardening rates that supply new grains to the surface. We consider the limits on supply of sodium and potassium atoms to the atmosphere, and rates of photoion recycling to the surface. Thermal vaporization rates are severely limited by the ability of atoms to diffuse to the surface of the grain. Therefore, the diffusion-limited thermal vaporization rates on Mercury's surface are comparable to or less than the PSD rates. Ion sputtering is primarily due to highly ionized heavy ions, even though they represent a small fraction of the solar wind. We have shown that up to 60% of the Na photoions are deposited on the surface of Mercury. Ion recycling to the surface can have a long-term effect on the regolith abundance if an average recycling pattern persists such that more ions return to a particular area than are launched there. It is unknown whether the formation of latitude bands of >100% ion retention persist on average despite a rapidly changing magnetosphere. The total exospheric column of sodium observed at Mercury between 1997 to 2003 varied by a factor of 2-3 from perihelion to aphelion.  相似文献   
95.
Abstract— We have analyzed several types of data associated with the well‐documented fall of the Neuschwanstein meteorites on April 6, 2002 (a total of three meteorites have been recovered). This includes ground‐based photographic and radiometer data as well as infrasound and seismic data from this very significant bolide event (Spurný et al. 2002, 2003). We have also used these data to model the entry of Neuschwanstein, including the expected dynamics, energetics, panchromatic luminosity, and associated fragmentation effects. In addition, we have calculated the differential efficiency of acoustical waves for Neuschwanstein and used these values to compare against the efficiency calculated using available ground‐based infrasound data. This new numerical technique has allowed the source height to be determined independent of ray tracing solutions. We have also carried out theoretical ray tracing for a moving point source (not strictly a cylindrical line emission) and for an infinite speed line source. In addition, we have determined the ray turning heights as a function of the source height for both initially upward and downward propagating rays, independent of the explicit ray tracing (detailed propagation path) programs. These results all agree on the origins of the acoustic emission and explicit source heights for Neuschwanstein for the strongest infrasonic signals. Calculated source energies using more than four different independent approaches agree that Neuschwanstein was certainly <500 kg in initial mass, given the initial velocity of 20.95 km/s, resulting in an initial source energy ≤0.0157‐0.0276 kt TNT equivalent (4.185 times 1012 J). Local source energies at the calculated infrasonic/seismic source altitudes are up to two orders of magnitude smaller than this initial source energy.  相似文献   
96.
Multi-ring impact basins have been found on the surfaces of almost all planetary bodies in the Solar system with solid crusts. The details of their formation mechanism are still unclear. We present results of our numerical modeling of the formation of the largest known terrestrial impact craters. The geological and geophysical data on these structures accumulated over many decades are used to place constraints on the parameters of available numerical models with a dual purpose: (i) to choose parameters in available mechanical models for the crustal response of planetary bodies to a large impact and (ii) to use numerical modeling to refine the possible range of original diameters and the morphology of partially eroded terrestrial craters. We present numerical modeling results for the Vredefort, Sudbury, Chicxulub, and Popigai impact craters and compare these results with available geological and geophysical information.  相似文献   
97.
The discovery of X-ray binary systems in the 1960's opened up stellar evolution theory by revealing further endpoints in addition to white dwarfs. This review summarises recent progress in studies of stellar-evolutionary processes that lead to X-ray binaries themselves, the mass transfer rates that power them, and the accretion processes which convert this into electromagnetic radiation. Particular attention is paid to the topics of mass transfer fluctuations and of the accretion by magnetic compact stars.  相似文献   
98.
Intermediate orbit for general planetary theory is constructed in the form of multivariate Fourier series with numerical coefficients. The structure and efficiency of the derived series are illustrated by giving various statistical properties of the coefficients.The ability of the recently proposed elliptic function approach to compress the Fourier series representing the intermediate orbit is investigated. Our results confirm that when mutual perturbations of a pair of planets are considered the elliptic function approach is quite efficient and allows one to compress the series substantially. However, when perturbations of three or more planets are under study the elliptic function approach does not give any advantages.  相似文献   
99.
The extreme ultraviolet imaging telescope (EIT) of SOHO offers a unique record of the solar atmosphere for its sampling in temperature, field of view, resolution, duration, and cadence. To investigate globally and locally its topology and evolution during the solar cycle, we consider a multi-scale approach, and more precisely we use the wavelet spectrum. We present three results among the applications of such a procedure. First, we estimate the typical dimension of the supergranules as seen in the 30.4 nm passband, and we show that the evolution of the characteristic network scale is almost in phase with the solar cycle. Second, we build pertinent time series that give the evolution of the signal energy present in the corona at different scales. We propose a method that detects eruptions and post-flaring activity in EUV image sequences. Third, we introduce a new way to extract active regions in EIT images, with perspectives in, e.g., long-term irradiance analysis.  相似文献   
100.
We consider the evolution of certain low-mass binaries, incorporating models of (a) internal evolution, (b) tidal friction, (c) dynamo activity driven by an elementary α,Ω dynamo, (d) stellar wind driven by the activity, and (e) magnetic braking as a consequence of wind and poloidal dynamo-generated magnetic field. In some circumstances the stellar wind is found to remove mass on a nuclear timescale, as is necessary to explain some observed systems. We can hope that various uncertainties in the model may be clarified by a careful comparison of the models with such observed quantities as rotation periods. These are modified by processes (a), (b) and (e). Assuming that stellar evolution is slow, rotation rate should in some circumstances represent a balance between magnetic braking trying to slow the star down and tidal friction trying to spin it up. Preliminary attempts are promising, but indicate that some fine tuning is necessary. When there is a third body present, in an orbit which is inclined but not necessarily of short period, the eccentricity of a close binary can be strongly modified by ‘Kozai cycles’. We show that this may complicate attempts to account for spin rates of stars in close binaries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号