首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130611篇
  免费   1929篇
  国内免费   843篇
测绘学   3198篇
大气科学   9118篇
地球物理   24833篇
地质学   47893篇
海洋学   11333篇
天文学   29017篇
综合类   413篇
自然地理   7578篇
  2022年   697篇
  2021年   1185篇
  2020年   1327篇
  2019年   1456篇
  2018年   4575篇
  2017年   4205篇
  2016年   4204篇
  2015年   1863篇
  2014年   3369篇
  2013年   6130篇
  2012年   4127篇
  2011年   6157篇
  2010年   5573篇
  2009年   6856篇
  2008年   5909篇
  2007年   6325篇
  2006年   4627篇
  2005年   3729篇
  2004年   3605篇
  2003年   3455篇
  2002年   3260篇
  2001年   2767篇
  2000年   2723篇
  1999年   2286篇
  1998年   2290篇
  1997年   2162篇
  1996年   1848篇
  1995年   1824篇
  1994年   1621篇
  1993年   1539篇
  1992年   1423篇
  1991年   1457篇
  1990年   1501篇
  1989年   1320篇
  1988年   1247篇
  1987年   1444篇
  1986年   1258篇
  1985年   1592篇
  1984年   1826篇
  1983年   1736篇
  1982年   1606篇
  1981年   1506篇
  1980年   1347篇
  1979年   1281篇
  1978年   1257篇
  1977年   1124篇
  1976年   1084篇
  1975年   1022篇
  1974年   1063篇
  1973年   1111篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
991.
Atomistic simulations have been carried out to investigate the mechanisms of noble gas incorporation in minerals using both the traditional two-region approach and the “supercell” method. The traditional two-region approach has been used to calculate defect energies for Ne, Ar, Kr and Xe incorporation in MgO, CaO, diopside and forsterite in the static limit and at one atmosphere pressure. The possibilities of noble gas incorporation via both substitution and interstitial mechanisms are studied. The favored mechanism varies from mineral to mineral and from noble gas to noble gas. In all minerals studied, the variation of the solution energies of noble gas substitution with atomic radius appears approximately parabolic, analogous to those for 1+, 2+, 3+ and 4+ trace element incorporation on crystal lattice sites. Noble gas solution energies thus also fall on a curve, similar to those previously observed for cations with different charges, but with much lower curvature.The “supercell” method has been used to investigate the pressure dependence of noble gas incorporation in the same systems. Results indicate a large variation of the solubility of the larger noble gases, Kr and Xe with pressure. In addition, explicit simulation of incorporation at the (0 0 1) surface of MgO shows that the solubility of the heavier noble gases may be considerably enhanced by the presence of interfaces.  相似文献   
992.
We studied uptake mechanisms for dissolved Al on amorphous silica by combining bulk-solution chemistry experiments with solid-state Nuclear Magnetic Resonance techniques (27Al magic-angle spinning (MAS) NMR, 27Al{1H} cross-polarization (CP) MAS NMR and 29Si{1H} CP-MAS NMR). We find that reaction of Al (1 mM) with amorphous silica consists of at least three reaction pathways; (1) adsorption of Al to surface silanol sites, (2) surface-enhanced precipitation of an aluminum hydroxide, and (3) bulk precipitation of an aluminosilicate phase. From the NMR speciation and water chemistry data, we calculate that 0.20 (±0.04) tetrahedral Al atoms nm−2 sorb to the silica surface. Once the surface has sorbed roughly half of the total dissolved Al (∼8% site coverage), aluminum hydroxides and aluminosilicates precipitate from solution. These precipitation reactions are dependent upon solution pH and total dissolved silica concentration. We find that the Si:Al stoichiometry of the aluminosilicate precipitate is roughly 1:1 and suggest a chemical formula of NaAlSiO4 in which Na+ acts as the charge compensating cation. For the adsorption of Al, we propose a surface-controlled reaction mechanism where Al sorbs as an inner-sphere coordination complex at the silica surface. Analogous to the hydrolysis of , we suggest that rapid deprotonation by surface hydroxyls followed by dehydration of ligated waters results in four-coordinate (>SiOH)2Al(OH)2 sites at the surface of amorphous silica.  相似文献   
993.
Neutrophilic iron oxidizing bacteria (FeOB) must actively compete with rapid abiotic processes governing Fe(II) oxidation and as a result have adapted to primarily inhabit low-O2 environments where they can more successfully compete with abiotic Fe(II) oxidation. The spatial distribution of these microorganisms can be observed through the chemical gradients they affect, as measured using in situ voltammetric analysis for dissolved Fe(II), Fe(III), O2, and FeS(aq). Field and laboratory determination of the chemical environments inhabited by the FeOB were coupled with detailed kinetic competition studies for abiotic and biotic oxidation processes using a pure culture of FeOB to quantify the geochemical niche these organisms inhabit. In gradient culture tubes, the maximum oxygen levels, which were associated with growth bands of Sideroxydans lithotrophicus (ES-1, a novel FeOB), were 15-50 μM. Kinetic measurements made on S. lithotrophicus compared biotic/abiotic (killed control) Fe oxidation rates. The biotic rate can be a significant and measurable fraction of the total Fe oxidation rate below O2 concentrations of approximately 50 μM, but biotic Fe(II) oxidation (via the biotic/abiotic rate comparison) becomes difficult to detect at higher O2 levels. These results are further supported by observations of conditions supporting FeOB communities in field settings. Variablity in cell densities and cellular activity as well as variations in hydrous ferrous oxide mineral quantities significantly affect the laboratory kinetic rates. The microbial habitat (or geochemical niche) where FeOB are active is thus largely controlled by the competition between abiotic and biotic kinetics, which are dependent on Fe(II) concentration, PO2, temperature and pH in addition to the surface area of hydrous ferric oxide minerals and the cell density/activity of FeOB. Additional field and lab culture observations suggest a potentially important role for the iron-sulfide aqueous molecular cluster, FeS(aq), in the overall cycling of iron associated with the environments these microorganisms inhabit.  相似文献   
994.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   
995.
δ34S and sulfate concentrations were determined in snow pit samples using a thermal ionization mass spectrometric technique capable of 0.2‰ accuracy and requires ≈5 μg (0.16 μmol) natural S. The technique utilizes a 33S-36S double spike for instrumental mass fractionation correction, and has been applied to snow pit samples collected from the Inilchek Glacier, Kyrgyzstan and from Summit, Greenland. These δ34S determinations provide the first high-resolution seasonal data for these sites, and are used to estimate seasonal sulfate sources. Deuterium (δD) and oxygen (δ18O) isotope data show that the Inilchek and Summit snow pit samples represent precipitation over ≈20 months.The δ34S values for the Inilchek ranged from +2.6 ± 0.4‰ to +7.6 ± 0.4‰ on sample sizes ranging from 0.3 to 1.8 μmol S. δ34S values for Greenland ranged from +3.6 ± 0.7‰ to +13.3 ± 5‰ for sample sizes ranging from 0.05 to 0.29 μmol S. The concentration ranged from 92.6 ± 0.4 to 1049 ± 4 ng/g for the Inilchek and 18 ± 9 to 93 ± 6 ng/g for the Greenland snow pit. Anthropogenic sulfate dominates throughout the sampled time interval for both sites based on mass balance considerations. Additionally, both sites exhibit a seasonal signature in both δ34S and concentration. The thermal ionization mass spectrometric technique has three advantages compared to gas source isotopic methods: (1) sample size requirements of this technique are 10-fold less permitting access to the higher resolution S isotope record of low concentration snow and ice, (2) the double spike technique permits δ34S and S concentration to be determined simultaneously, and (3) the double spike is an internal standard.  相似文献   
996.
Skeletal cadmium-to-calcium (Cd/Ca) ratios in hermatypic stony corals have been used to reconstruct changes in upwelling over time, yet there has not been a systematic evaluation of this tracer’s natural variability within and among coral species, between depths and across environmental conditions. Here, coral skeletal Cd/Ca ratios were measured in multiple colonies of Pavona clavus, Pavona gigantea and Porites lobata reared at two depths (1 and 7 m) during both upwelling and nonupwelling intervals in the Gulf of Panama (Pacific). Overall, skeletal Cd/Ca ratios were significantly higher during upwelling than during nonupwelling, in shallow than in deep corals, and in both species of Pavona than in P. lobata. P. lobata skeletal Cd/Ca ratios were uniformly low compared to those in the other species, with no significant differences between upwelling and nonupwelling values. Among colonies of the same species, skeletal Cd/Ca ratios were always higher in all shallow P. gigantea colonies during upwelling compared to nonupwelling, though the magnitude of the increase varied among colonies. For P. lobata, P. clavus and deep P. gigantea, changes in skeletal Cd/Ca ratios were not consistent among all colonies, with some colonies having lower ratios during upwelling than during nonupwelling. No statistically significant relationships were found between skeletal Cd/Ca ratios and maximum linear skeletal extension, δ13C or δ18O, suggesting that at seasonal resolution the Cd/Ca signal was decoupled from growth rate, coral metabolism, and ocean temperature and salinity, respectively. These results led to the following conclusions, (1) coral skeletal Cd/Ca ratios are independent of skeletal extension, coral metabolism and ambient temperature/salinity, (2) shallow P. gigantea is the most reliable species for paleoupwelling reconstruction and (3) the average Cd/Ca record of several colonies, rather than of a single coral, is needed to reliably reconstruct paleoupwelling events.  相似文献   
997.
In this study, we measure proton, Pb, and Cd adsorption onto the bacteria Deinococcus radiodurans, Thermus thermophilus, Acidiphlium angustum, Flavobacterium aquatile, and Flavobacterium hibernum, and we calculate the thermodynamic stability constants for the important surface complexes. These bacterial species represent a wide genetic diversity of bacteria, and they occupy a wide range of habitats. All of the species, except for A. angustum, exhibit similar proton and metal uptake. The only species tested that exhibits significantly different protonation behavior is A. angustum, an acidophile that grows at significantly lower pH than the other species of this study. We demonstrate that a single, metal-specific, surface complexation model can be used to reasonably account for the acid/base and metal adsorption behaviors of each species. We use a four discrete site non-electrostatic model to describe the protonation of the bacterial functional groups, with averaged pKa values of 3.1 ± 0.3, 4.8 ± 0.2, 6.7 ± 0.1, and 9.2 ± 0.3, and site concentrations of (1.0 ± 0.17) × 10−4, (9.0 ± 3.0) × 10−5, (4.6 ± 1.8) × 10−5, and (6.1 ± 2.3) × 10−5 mol of sites per gram wet mass of bacteria, respectively. Adsorption of Cd and Pb onto the bacteria can be accounted for by the formation of complexes with each of the bacterial surface sites. The average log stability constants for Cd complexes with Sites 1-4 are 2.4 ± 0.4, 3.2 ± 0.1, 4.4 ± 0.1, and 5.3 ± 0.1, respectively. The average log stability constants for Pb complexes with Sites 1-4 are 3.3 ± 0.2, 4.5 ± 0.3, 6.5 ± 0.1, and 7.9 ± 0.5, respectively. This study demonstrates that a wide range of bacteria exhibit similar proton and metal adsorption behaviors, and that a single set of averaged acidity constants, site concentrations, and stability constants for metal-bacterial surface complexes yields a reasonable model for the adsorption behavior of many of these species. The differences in adsorption behavior that we observed for A. angustum demonstrate that genetic differences do exist between the cell wall functional group chemistries of some bacterial species, and that significant exceptions to the typical bacterial adsorption behavior do exist.  相似文献   
998.
With recent changes in the ways that state agencies are implementing their environmental policies, the line between public and private is becoming increasingly blurred. This includes shifts from state-led implementation of environmental policies to conservation plans that are implemented and managed by multi-sectoral networks of governments, the private sector and environmental non-governmental organizations (ENGOs). This paper examines land trusts as private conservation initiatives that become part of neoliberal governance arrangements and partnerships that challenge our conceptions of environmental preservation and democratic participation. The paper starts with an examination of the concept of neoliberalized environmental governance. Next, it addresses the shifting social constructions of property and land in the context of protecting large scale ecosystems. Through a case study of the extension of new environmental governance arrangements on the Oak Ridges Moraine in Ontario, we examine the relationships that have formed between different levels of the state and environmental non-governmental organizations. Finally, we analyze the expansion of land trusts and private conservation initiatives that are predicated on private land ownership and the commodification of nature, the emerging discourses and practices of private conservation, and how these are implicated in the privatization and neoliberalization of nature.  相似文献   
999.
The Mo stable isotope system is being applied to study changes in ocean redox. Such applications implicitly assume that Mo isotope fractionation in aqueous systems is relatively insensitive to frequently changing environmental variables such as temperature (T) and ionic strength (I). A major driver of fractionation is the adsorption of Mo to Mn oxyhydroxide surfaces [Barling J. and Anbar A. D. (2004) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet. Sci. Lett.217(3-4), 315-329]. Here, we report the results of experiments that determine the extent to which Mo isotope fractionation during adsorption of Mo to the Mn oxyhydroxide mineral birnessite is sensitive to T and I. The results are compared to new predictions from quantum chemical computations. We measured fractionation from 1 to 50 °C at I = 0.1 m and found that Δ97/95Modissolved-adsorbed varies from 1.9‰ to 1.6‰ over this temperature range. Experiments were also performed at 25 °C in synthetic seawater (I = 0.7); fractionation at this condition was the same within analytical error as in low ionic strength experiments. These findings confirm that the Mo isotope fractionation during adsorption to Mn oxyhydroxides is relatively insensitive to variations and T and I over environmentally relevant ranges. To relate these findings to potential mechanisms of Mo isotope fractionation, we also report results for density functional theory computations of the fractionation between and various possible structures of molybdic acid as a function of temperature. Because no plausible species fractionates from with a magnitude matching the experiments, we are left with three possibilities to explain the fractionation: (1) solvation effects on the vibrational frequencies of aqueous species considered thus far are significant, such that our calculations in vacuo yield inaccurate fractionations; (2) a trace aqueous species not yet considered fractionates from and then adsorbs to birnessite; or (3) a surface complex not present in solution forms on birnessite in which Mo is not tetrahedrally coordinated. Our findings help validate assumptions underlying paleoceanographic applications of the Mo isotope system and also lead us closer to understanding the mechanism of isotope fractionation during adsorption of Mo to Mn oxyhydroxides.  相似文献   
1000.
Lead concentrations and isotope ratios measured in river water colloids and streambed sediment samples along 426 km of the Sacramento River, California reveal that the influence of lead from the historical mining of massive sulfide deposits in the West Shasta Cu-mining district (at the headwaters of the Sacramento River) is confined to a 60 km stretch of river immediately downstream of that mining region, whereas inputs from past leaded gasoline emissions and historical hydraulic Au-mining in the Sierra Nevadan foothills are the dominant lead sources in the remaining 370 km of the river. Binary mixing calculations suggest that more than 50% of the lead in the Sacramento River outside of the region of influence of the West Shasta Cu-mining district is derived from past depositions of leaded gasoline emissions. This predominance is the first direct documentation of the geographic extent of gasoline lead persistence throughout a large riparian system (>160,000 km2) and corroborates previous observations based on samples taken at the mouth of the Sacramento River. In addition, new analyses of sediment samples from the hydraulic gold mines of the Sierra Nevada foothills confirm the present-day fluxes into the Sacramento River of contaminant metals derived from historical hydraulic Au-mining that occurred during the latter half of the 19th and early part of the 20th centuries. These fluxes occur predominantly during periods of elevated river discharge associated with heavy winter precipitation in northern California. In the broadest context, the study demonstrates the potential for altered precipitation patterns resulting from climate change to affect the mobility and transport of soil-bound contaminants in the surface environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号