首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1194篇
  免费   66篇
  国内免费   6篇
测绘学   18篇
大气科学   64篇
地球物理   256篇
地质学   378篇
海洋学   95篇
天文学   306篇
综合类   4篇
自然地理   145篇
  2023年   9篇
  2021年   19篇
  2020年   19篇
  2019年   31篇
  2018年   29篇
  2017年   27篇
  2016年   48篇
  2015年   23篇
  2014年   32篇
  2013年   58篇
  2012年   26篇
  2011年   51篇
  2010年   45篇
  2009年   59篇
  2008年   69篇
  2007年   67篇
  2006年   62篇
  2005年   45篇
  2004年   41篇
  2003年   42篇
  2002年   41篇
  2001年   30篇
  2000年   26篇
  1999年   26篇
  1998年   41篇
  1997年   21篇
  1996年   11篇
  1995年   13篇
  1994年   20篇
  1993年   11篇
  1992年   7篇
  1991年   7篇
  1990年   13篇
  1989年   12篇
  1988年   12篇
  1987年   12篇
  1986年   12篇
  1985年   15篇
  1984年   8篇
  1983年   9篇
  1982年   11篇
  1981年   6篇
  1980年   11篇
  1979年   10篇
  1978年   5篇
  1977年   7篇
  1976年   8篇
  1975年   5篇
  1973年   5篇
  1972年   12篇
排序方式: 共有1266条查询结果,搜索用时 15 毫秒
81.
In order to study the relationship between water composition and stream flow rate, it is desirable to sample at a frequency related to flow rate, especially during storm events. In a rural catchment of 18 ha near Oxford, the rate of rainfall was found to be linearly related to discharge on the rising limb of the stream hydrograph. A sampling system was therefore designed in which electrical pulses from a tipping-bucket raingauge were used to initiate and control the action of an automatic water sampler. A threshold rainfall intensity is set above which sampling commences. Sampling then continues at regular increments of rainfall until the intensity drops below the threshold, after which sampling occurs at regular intervals during the period that the stream flow reverts to normal. The CMOS electrical circuits which control the sampling also operate a cassette tape recorder which records the time of each tip of the raingauge and operation of the sampler. Since the sytem is designed to impose very little additional load on the battery which powers the water sampler, and can operate unattended for at least a fortnight, it is ideal for use in small, remote catchments. The system has been extended to include measurements of water temperature and could provide other measurements as well.  相似文献   
82.
Sinker Butte is the erosional remnant of a very large basaltic tuff cone of middle Pleistocene age located at the southern edge of the western Snake River Plain. Phreatomagmatic tephras are exposed in complete sections up to 100 m thick in the walls of the Snake River Canyon, creating an unusual opportunity to study the deposits produced by this volcano through its entire sequence of explosive eruptions. The main objectives of the study were to determine the overall evolution of the Sinker Butte volcano while focusing particularly on the tephras produced by its phreatomagmatic eruptions. Toward this end, twenty-three detailed stratigraphic sections ranging from 20 to 100 m thick were examined and measured in canyon walls exposing tephras deposited around 180° of the circumference of the volcano.Three main rock units are recognized in canyon walls at Sinker Butte: a lower sequence composed of numerous thin basaltic lava flows, an intermediate sequence of phreatomagmatic tephras, and a capping sequence of welded basaltic spatter and more lava flows. We subdivide the phreatomagmatic deposits into two main parts, a series of reworked, mostly subaqueously deposited tephras and a more voluminous sequence of overlying subaerial surge and fall deposits. Most of the reworked deposits are gray in color and exhibit features such as channel scour and fill, planar-stratification, high and low angle cross-stratification, trough cross-stratification, and Bouma-turbidite sequences consistent with their being deposited in shallow standing water or in braided streams. The overlying subaerial deposits are commonly brown or orange in color due to palagonitization. They display a wide variety of bedding types and sedimentary structures consistent with deposition by base surges, wet to dry pyroclastic fall events, and water saturated debris flows.Proximal sections through the subaerial tephras exhibit large regressive cross-strata, planar bedding, and bomb sags suggesting deposition by wet base surges and tephra fallout. Medial and distal deposits consist of a thick sequence of well-bedded tephras; however, the cross-stratified base-surge deposits are thinner and interbedded within the fallout deposits. The average wavelength and amplitude of the cross strata continue to decrease with distance from the vent. These bedded surge and fall deposits grade upward into dominantly fall deposits containing 75–95% juvenile vesiculated clasts and localized layers of welded spatter, indicating a greatly reduced water-melt ratio. Overlying these “dryer” deposits are massive tuff breccias that were probably deposited as water saturated debris flows (lahars). The first appearance of rounded river gravels in these massive tuff breccias indicates downward coring of the diatreme and entrainment of country rock from lower in the stratigraphic section. The “wetter” nature of these deposits suggests a renewed source of external water. The massive deposits grade upward into wet fallout tephras and the phreatomagmatic sequence ends with a dry scoria fall deposit overlain by welded spatter and lava flows.Field observations and two new 40Ar–39Ar incremental heating dates suggest the succession of lavas and tephra deposits exposed in this part of the Snake River canyon may all have been erupted from a closely related complex of vents at Sinker Butte. We propose that initial eruptions of lava flows built a small shield edifice that dammed or disrupted the flow of the ancestral Snake River. The shift from effusive to explosive eruptions occurred when the surface water or rising ground water gained access to the vent. As the river cut a new channel around the lava dam, water levels dropped and the volcano returned to an effusive style of eruption.  相似文献   
83.
The clay-sand mixture model of Xu and White is shown to simulate observed relationships between S-wave velocity (or transit time), porosity and clay content. In general, neither S-wave velocity nor S-wave transit time is a linear function of porosity and clay content. For practical purposes, clay content is approximated by shale volume in well-log applications. In principle, the model can predict S-wave velocity from lithology and any pair of P-wave velocity, porosity and shale volume. Although the predictions should be the same if all measurements are error free, comparison of predictions with laboratory and logging measurements show that predictions using P-wave velocity are the most reliable. The robust relationship between S- and P-wave velocities is due to the fact that both are similarly affected by porosity, clay content and lithology. Moreover, errors in the measured P-wave velocity are normally smaller than those in porosity and shale volume, both of which are subject to errors introduced by imperfect models and imperfect parameters when estimated from logs. Because the model evaluates the bulk and shear moduli of the dry rock frame by a combination of Kuster and Toksöz’ theory and differential effective medium theory, using pore aspect ratios to characterize the compliances of the sand and clay components, the relationship between P- and S-wave velocities is explicit and consistent. Consequently the model sidesteps problems and assumptions that arise from the lack of knowledge of these moduli when applying Gassmann's theory to this relationship, making it a very flexible tool for investigating how the vP-vs relationship is affected by lithology, porosity, clay content and water saturation. Numerical results from the model are confirmed by laboratory and logging data and demonstrate, for example, how the presence of gas has a more pronounced effect on P-wave velocity in shaly sands than in less compliant cleaner sandstones.  相似文献   
84.
Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8°C in early summer and from 15 to 17°C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area.Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953–1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation.  相似文献   
85.
Minor and trace elements in HF-soluble zircons   总被引:2,自引:0,他引:2  
Electron probe analysis of a group of HF-soluble zircons from porphyroids of the Thuringian Forest, Germany, established yttrium, phosphorus, and iron to be the significant minor constituents. It is believed that these elements render the zircon structure HF-soluble. The Y content varies from about 6500–48000 ppm=0.83–6.10% Y2O3; the P concentrations range from a low of about 790 to a maximum of 4000 ppm=0.18–0.92% P2O5; the Fe content varies from about 400–15000 ppm=0.06–2.10% Fe2O3. Although both Y and P are distributed throughout each given grain, they are sometimes mutually enriched in growth zones. These zones are also resolved in reflected light micrographs and the electron images.  相似文献   
86.
87.
88.
89.
An analytical study is carried out of rays from a source in a magneto-ionic medium in which the magnetic field is linear in the position coordinates. A general solution is given, and special cases, including that in which the magnetic field vector is confined to a plane, are examined.In the latter case, the specific sub-case of null current density, in which the field lines are rectangular hyperbolas, has been the subject of detailed numerical calculations. It is shown that focusing of rays can occur, though perhaps less readily than in the case of parabolic field lines considered by previous workers. We relate our parametrisation quantitatively to the terrestrial magnetic field.  相似文献   
90.
Density measurements on nine liquids in the CaCO3–Li2CO3–Na2CO3–K2CO3 quaternary system were performed at 1 bar between 555 and 969 °C using the double-bob Archimedean method. Our density data on the end-member alkali carbonate liquids are in excellent agreement with the NIST standards compiled by Janz (1992). The results were fitted to a volume equation that is linear in composition and temperature; this model recovers the measured volumes within experimental error (±0.18% on average, with a maximum residual of ±0.50%). Our results indicate that the density of the CaCO3 component in natrocarbonate liquids is 2.502 (±0.014) g/cm3 at 800 °C and 1 bar, which is within the range of silicate melts; its coefficient of thermal expansion is 1.8 (±0.5)×10–4 K–1 at 800 °C. Although the volumes of carbonate liquids mix linearly with respect to carbonate components, they do not mix linearly with silicate liquids. Our data are used with those in the literature to estimate the value of in alkaline silicate magmas (20 cm3/mol at 1400 °C and 20 kbar), where CO2 is dissolved as carbonate in close association with Ca. Our volume measurements are combined with sound speed data in the literature to derive the compressibility of the end-member liquids Li2CO3, Na2CO3, and K2CO3. These results are combined with calorimetric data to calculate the fusion curves for Li2CO3, Na2CO3, and K2CO3 to 5 kbar; the calculations are in excellent agreement with experimental determinations of the respective melting reactions.Editorial responsibility: I Carmichael  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号