首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1205篇
  免费   75篇
  国内免费   17篇
测绘学   16篇
大气科学   69篇
地球物理   326篇
地质学   408篇
海洋学   102篇
天文学   224篇
综合类   2篇
自然地理   150篇
  2021年   26篇
  2020年   13篇
  2019年   22篇
  2018年   31篇
  2017年   27篇
  2016年   29篇
  2015年   32篇
  2014年   29篇
  2013年   60篇
  2012年   38篇
  2011年   59篇
  2010年   50篇
  2009年   50篇
  2008年   70篇
  2007年   44篇
  2006年   47篇
  2005年   52篇
  2004年   35篇
  2003年   40篇
  2002年   26篇
  2001年   26篇
  2000年   17篇
  1999年   18篇
  1998年   31篇
  1997年   13篇
  1996年   15篇
  1995年   12篇
  1994年   20篇
  1993年   14篇
  1992年   16篇
  1991年   12篇
  1990年   12篇
  1989年   10篇
  1988年   7篇
  1987年   14篇
  1985年   10篇
  1984年   24篇
  1983年   26篇
  1982年   13篇
  1981年   21篇
  1980年   19篇
  1979年   21篇
  1978年   26篇
  1977年   29篇
  1976年   14篇
  1975年   10篇
  1974年   10篇
  1973年   15篇
  1972年   5篇
  1968年   7篇
排序方式: 共有1297条查询结果,搜索用时 31 毫秒
81.
82.
Samples of water, sediment and mussels (Mytilus edulis) from the southern Baltic Sea have been analysed for total hydrocarbons by fluorescence spectroscopy and capillary gas chromatography. The sediment and mussel samples have also been analysed for specific aliphatic and aromatic hydrocarbons by computerized capillary gas chromatography-mass spectrometry. The highest hydrocarbon concentrations in all samples occurred either inshore (particularly in Gdansk Bay) or in deep offshore basins where fine sediment accumulates.  相似文献   
83.
84.
85.
High precision U–Pb geochronology of rutile from quartz–carbonate–white mica–rutile veins that are hosted within eclogite and schist of the Monte Rosa nappe, western Alps, Italy, indicate that the Monte Rosa nappe was at eclogite-facies metamorphic conditions at 42.6 ± 0.6 Ma. The sample area [Indren glacier, Furgg zone; Dal Piaz (2001) Geology of the Monte Rosa massif: historical review and personal comments. SMPM] consists of eclogite boudins that are exposed inside a south-plunging overturned synform within micaceous schist. Associated with the eclogite and schist are quartz–carbonate–white mica–rutile veins that formed in tension cracks in the eclogite and along the contact between eclogite and surrounding schist. Intrusion of the veins at about 42.6 Ma occurred at eclogite-facies metamorphic conditions (480–570°C, >1.3–1.4 GPa) based on textural relations, oxygen isotope thermometry, and geothermobarometry. The timing of eclogite-facies metamorphism in the Monte Rosa nappe determined in this study is identical to that of the Gran Paradiso nappe [Meffan-Main et al. (2004) J Metamorphic Geol 22:261–281], confirming that these two units have shared the same Alpine metamorphic history. Furthermore, the Gran Paradiso and Monte Rosa nappes underwent eclogite-facies metamorphism within the same time interval as the structurally overlying Zermatt-Saas ophiolite [∼50–40 Ma; e.g., Amato et al. (1999) Earth Planet Sci Lett 171:425–438; Mayer et al. (1999) Eur Union Geosci 10:809 (abstract); Lapen et al. (2003) Earth Planet Sci Lett 215:57–72]. The nearly identical PTt histories of the Gran Paradiso, Monte Rosa, and Zermatt-Saas units suggest that these units shared a common Alpine tectonic and metamorphic history. The close spatial and temporal associations between high pressure (HP) ophiolite and continental crust during Alpine orogeny indicates that the HP internal basement nappes in the western Alps may have played a key role in exhumation and preservation of the ophiolitic rocks through buoyancy-driven uplift. Coupling of oceanic and continental crust may therefore be critical in preventing permanent loss of oceanic crust to the mantle.  相似文献   
86.
The Eoarchaean (>3,600 Ma) Itsaq Gneiss Complex of southern West Greenland is dominated by polyphase orthogneisses with a complex Archaean tectonothermal history. Some of the orthogneisses have c. 3,850 Ma zircons, and they vary from rare single phase metatonalites to more common complexly banded migmatites. This is due to heterogeneous strain, in situ anatexis and granitic veining superimposed during younger tectonothermal events. In the single-phase tonalites with c. 3,850 Ma zircon, oscillatory-zoned prismatic zircon is all 3,850 Ma old, but shows patchy ancient loss of radiogenic Pb. SHRIMP spot analyses and laser ablation ICP-MS depth profiling show that thin (usually < 10 μm) younger (3,660–3,590 Ma and Neoarchaean) shells of lower Th/U metamorphic zircon are present on these 3,850 Ma zircons. Several samples with this simple zircon population occur on islands near Akilia. In contrast, migmatites usually contain more complex zircon populations, with often more than one generation of igneous zircon present. Additional zircon dating of banded gneisses across the Complex shows that samples with c. 3,850 Ma igneous zircon are not just a phenomenon restricted to Akilia and adjacent islands. For example, migmatites from Itilleq (c. 65 km from Akilia) contain variable amounts of oscillatory-zoned 3,850 Ma and 3,650 Ma zircon, interpreted, respectively, as the rock age and the time of crustal melting under Eoarchaean metamorphism. With only 110–140 ppm Zr in the tonalites and likely magmatic temperatures of >850°C, zircon solubility–melt composition relationships show that they were only one-third saturated in zircon. Any zircon entrained in the precursor magmas would thus have been highly soluble. Combined with the cathodoluminesence imaging, this demonstrates that the c. 3,850 Ma oscillatory zoned zircon crystallised out of the melt and hence gives a magmatic age. Thus the rare well-preserved tonalites and palaeosome in migmatites testify that c. 3,850 Ma quartzo–feldspathic rocks are a widespread (but probably minor) component in the Itsaq Gneiss Complex. C. 3,850 Ma zircon with negative Eu anomalies (showing growth in felsic systems) also occurs as detrital grains in rare c. 3,800 Ma metaquartzites and as inherited grains in some 3,660 Ma granites (sensu stricto). These demonstrate that still more c. 3,850 Ma rocks were present, but were recycled into Eoarchaean sediments and crustally derived granites. The major and trace element characteristics (e.g. LREE enrichment, HREE depletion, low MgO) of the best-preserved c. 3,850 Ma rocks are typical of Archaean TTG suites, and thus argue for crust formation processes involving important contributions from melting of hydrated mafic crust to the earliest Archaean. Five c. 3,850 Ma tonalites were selected as the best preserved on the basis of field criteria and zircon petrology. Four of these samples have overlapping initial ɛNd (3,850 Ma) values from +2.9 to +3.6± 0.5, with the fourth having a slightly lower value of +0.6. These data provide additional evidence for a markedly LREE-depleted early terrestrial mantle reservoir. The role of c. 3,850 Ma crust should be considered in interpreting isotope signatures of the younger (3,800–3,600 Ma) rocks of the Itsaq Gneiss Complex. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
87.
Aerobic biodegradation of vapor-phase petroleum hydrocarbons was evaluated in an intact soil core from the site of an aviation gasoline release. An unsaturated zone soil core was subjected to a flow of nitrogen gas, oxygen, water vapor, and vapor-phase hydrocarbons in a configuration analogous to a biofilter or an in situ bioventing or sparging situation. The vertical profiles of vapor-phase hydrocarbon concentration in the soil core were determined by gas chromatography of vapor samples. Biodegradation reduced low influent hydrocarbon concentrations by 45 to 92 percent over a 0.6-m interval of an intact soil core. The estimated total hydrocarbon concentration was reduced by 75 percent from 26 to 7 parts per million. Steady-state concentrations were input to a simple analytical model balancing advection and first-order biodegradation of hydrocarbons. First-order rate constants for the major hydrocarbon compounds were used to calibrate the model to the concentration profiles. Rate constants for the seven individual hydrocarbon compounds varied by a factor of 4. Compounds with lower molecular weights, fewer methyl groups, and no quaternary carbons tended to have higher rate constants. The first-order rate constants were consistent with kinetic parameters determined from both microcosm and tubing cluster studies at the field site.  相似文献   
88.
Eocene shales metamorphosed by a naturally ignited coal seam in the Powder River Basin, Wyoming record a continuum of mineralogic and textural changes from relatively unaltered shale to melt developed during pyrometamorphism. Samples collected along a section 2 m in length, corresponding to a temperature range of approximately 1300°C, were examined optically and by XRD, SEM, and STEM. The low temperature samples are comprised primarily of silt-sized quartz, K-feldspar, and minor amounts of other detrital minerals in a continuous matrix of illite/smectite (I/S). Delamination of phyllosilicates due to dehydroxylation occurs early in the sequence with curling of individual layers from rim to core. Within one-half meter of melted areas, phyllosilicates have undergone an essentially isochemical reconstitution with nucleation and growth of mullite crystals with maximum diameters of 50 nm, randomly distributed within a non-crystalline phase that replaces I/S. Large detrital grains remain for the most part unaffected except for the inversion of quartz to tridymite/cristobalite. Within 1 mm of the solid/melt interface, the mullitebearing clay mineral matrix is essentially homogeneous in composition with obscure grain boundaries, caused by apparent homogenization of poorly crystalline material. This material is similar in composition to parent clays and acts as a matrix to angular, remnant tridymite/cristobalite grains. Rounded, smaller silica grains have reaction rims with the non-crystalline matrix; K-feldspar is no longer present (apparently reacted with the matrix) and the matrix contains abundant pore space due to shrinkage upon dehydroxylation. As isolated pods of paralava (glass) or fractures are approached, Fe–Ti–Al oxides become abundant. Vesicular glass is separated from clinker by a well-defined interface and contains numerous phenocrysts. XRF analyses and reduced area rastering using EDS imply enrichment of the melt phase in Fe, Ca, Mg and Mn, apparently due to vapor transport from other layers lower in the sedimentary sequence.Contribution No. 490, the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan  相似文献   
89.
The present work is a follow-up of the investigation on the decomposition reaction of kaolinite as a function of the defectivity of the starting material and the temperature of reaction. In the present work we study the high temperature reaction of mullite synthesis from kaolinite, from the starting point of the results obtained in the first part.Time resolved energy-dispersive powder diffraction patterns have been measured using synchrotron radiation in isothermal conditions. The apparent activation energy for mullite nucleation and growth is found to be related to the defective structure of the starting kaolinite, which thus must have an influence on the chemical homogeneity of the amorphous intermediate phase.  相似文献   
90.
The decomposition reaction of kaolinite has been investigated as a function of the defectivity of the starting material and the temperature of reaction. Time resolved energy-dispersive powder diffraction patterns have been measured using synchrotron radiation, both under a constant heating rate (heating rates from 10 to 100° C/min) and in isothermal conditions (in the temperature range 500 to 700° C). The apparent activation energy of the dehydroxylation process is different for kaolinites exhibiting a different degree of stacking fault density. The results of the analysis of the kinetic data indicate that the starting reaction mechanism is controlled by diffusion in the kaolinite particle. The diffusion process is dependent on the defective nature of both kaolinite and metakaolinite. At high temperatures, and at higher heating rates, the reaction mechanism changes and the resistance in the boundary layer outside the crystallites becomes the rate-limiting factor, and nucleation begins within the reacting particle. During the final stage of the dehydroxylation process the reaction is limited by heat or mass transfer, and this might be interpreted by the limited diffusion between the unreacted kaolinite domains and the metakaolinite matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号