首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   39篇
  国内免费   1篇
测绘学   11篇
大气科学   18篇
地球物理   157篇
地质学   157篇
海洋学   56篇
天文学   120篇
自然地理   48篇
  2022年   3篇
  2021年   10篇
  2020年   15篇
  2019年   11篇
  2018年   22篇
  2017年   18篇
  2016年   19篇
  2015年   19篇
  2014年   12篇
  2013年   39篇
  2012年   19篇
  2011年   34篇
  2010年   24篇
  2009年   36篇
  2008年   24篇
  2007年   19篇
  2006年   15篇
  2005年   17篇
  2004年   16篇
  2003年   15篇
  2002年   19篇
  2001年   11篇
  2000年   17篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   7篇
  1983年   4篇
  1982年   8篇
  1981年   11篇
  1980年   8篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1975年   10篇
  1974年   8篇
  1973年   5篇
  1972年   4篇
排序方式: 共有567条查询结果,搜索用时 31 毫秒
481.
The Sepik River is a major contributor of water, sediment and associated organic loads to the coastal waters of northern New Guinea. With a narrow continental shelf and strong coastal currents, much of this exported material is available for long distance transport into the Bismarck Sea and beyond. CTD casts and associated instrument data showed that the river signature was visible in optical measurements of deep profiles from the Sepik Canyon. Discrete water samples were collected in clean Niskin bottles for organic analysis. Additional high volume samples for lipid classes were collected with Infiltrex samplers deployed on a floating mooring, along with two sediment trap arrays set at 100 and 260 m depth. The Infiltrex samplers were set at 55, 180, 200 and 220 m depth in an effort to target the surface layers and those of westward flowing water in the New Guinea Coastal Undercurrent (NGCUC). The samplers allowed analysis of lipid classes in both dissolved and particulate phases.Analyses of lignin phenols, hydrocarbons, fatty acids, sterols, and n-alcohols in the samples were used to estimate the cycling of the organic input from the river system to the coastal waters and possible entrainment in the NGCUC. The molecular biomarkers confirmed the Sepik River as a significant source of reduced carbon in the near coastal zone influenced by the plume. They indicated that ca. 90% of the organic carbon delivered to the coastal zone is dispersed or degraded, with only about 10% of terrestrial carbon being deposited on to the narrow shelf of coastal sediments. The dissolved lignin phenols provided evidence for desorption of organics from particles with increasing depth. However, this desorption process did not change the C/N ratio of the dissolved organic carbon (DOC) in the deep water of the Sepik Canyon. The hydrocarbons, sterols and fatty acids showed the change from lipid content dominated by phytoplankton in surface layers to zooplankton and bacterial biomarkers in deeper waters. The organic biomarkers provided evidence that some of the dissolved organic input from the Sepik River was injected into fast moving undercurrents. However, concentrations of terrestrial biomarkers were diluted and/or degraded to non-detectable levels within 100 km of the source.  相似文献   
482.
Using the clumped isotope method, the temperature of dolomite and calcite formation and the oxygen isotopic composition (δ18Ow) of the diagenetic fluids have been determined in a core taken from the Arab‐D of the Ghawar field, the largest oil reservoir in the world. These analyses show that while the dolomites and limestones throughout the major zones of the reservoir recrystallized at temperatures between ca 80°C and 100°C, the carbonates near the top of the reservoir formed at significantly lower temperatures (20 to 30°C). Although the δ18O values of the diagenetic fluids show large variations ranging from ca <0‰ to ca +8‰, the variations exhibit consistent downhole changes, with the highest values being associated with the portion of the reservoir with the highest permeability and porosity. Within the limestones, dolomites and dolomites associated with the zone of high permeability, there are statistically significant different trends between the δ18Ow values and recrystallization temperature. These relationships have different intercepts suggesting that fluids with varying δ18Ow values were involved in the formation of dolomite and limestone compared to the formation of dolomite associated with the zone of high permeability. These new data obtained using the clumped isotope technique show how dolomitization and recrystallization by deep‐seated brines with elevated δ18Ow values influence the δ18O values of carbonates, possibly leading to erroneous interpretations unless temperatures can be adequately constrained.  相似文献   
483.
Sumaco Volcano is located in the rear-arc of Ecuador and produces phonolitic alkaline lavas hosting a unique assemblage of minerals including haüyne and titanaugite. The most mafic lavas are picrobasalts that contain titanaugite as the primary mineral phase; the most evolved tephri-phonolite lavas contain titanaugite?+?anorthoclase?+?haüyne. Titanaugite forms at middle to deep crustal pressures, whereas haüyne is only stable at shallow depths in highly oxidizing conditions. The Sumaco mineral assemblages and geochemistry indicate that fractionation of the titanaugite- and haüyne-bearing assemblage took place over a range of pressures from 5 to 25 kbar (14–75 km), with at least 50% of differentiation taking place at shallow crustal levels. Minerals record multiple cycles of recharge and mixing accompanied by an increase in fO2 and sulfur concentration during differentiation. Mantle-like Sr and Nd isotope values (87Sr/86Sr = 0.70406–0.70423; 143Nd/144Nd = 0.512880–0.512913) indicate minimal crustal assimilation. Sumaco’s unique geochemical composition is not observed in the nearby volcanoes Antisana, Pan de Azucar or El Reventador suggesting that its unique magma source is confined to this volcano. The high temperature and sulfate-saturated conditions at shallow depths suggest that magma ascends rapidly to a shallow reservoir where the majority of crystallization and recharge takes place prior to eruption. An important conclusion of this research is that Sumaco does not represent typical rear-arc subduction processes, and caution should be used when using Sumaco as an end-member to evaluate across-arc processes in the Northern Volcanic Zone.  相似文献   
484.
Structural and topological information play a key role in modeling flow and transport through fractured rock in the subsurface. Discrete fracture network (DFN) computational suites such as dfnWorks (Hyman et al. Comput. Geosci. 84, 10–19 2015) are designed to simulate flow and transport in such porous media. Flow and transport calculations reveal that a small backbone of fractures exists, where most flow and transport occurs. Restricting the flowing fracture network to this backbone provides a significant reduction in the network’s effective size. However, the particle-tracking simulations needed to determine this reduction are computationally intensive. Such methods may be impractical for large systems or for robust uncertainty quantification of fracture networks, where thousands of forward simulations are needed to bound system behavior. In this paper, we develop an alternative network reduction approach to characterizing transport in DFNs, by combining graph theoretical and machine learning methods. We consider a graph representation where nodes signify fractures and edges denote their intersections. Using random forest and support vector machines, we rapidly identify a subnetwork that captures the flow patterns of the full DFN, based primarily on node centrality features in the graph. Our supervised learning techniques train on particle-tracking backbone paths found by dfnWorks, but run in negligible time compared to those simulations. We find that our predictions can reduce the network to approximately 20% of its original size, while still generating breakthrough curves consistent with those of the original network.  相似文献   
485.
The Mississippi River Delta Complex (MRDC) has experienced extensive wetland loss in the last century due, in part, to flood control levees that have isolated the lower Mississippi River and its sediment resource from adjacent wetlands. Reconnecting the River to these wetlands through diversions is being used and proposed on a larger scale for the future, to reduce wetland loss rates. However, some currently operating diversions (e.g., Caernarvon and Davis Pond) have been implicated in causing negative impacts on wetland ecosystem structure and function due to increased nutrient loads in diverted Mississippi River water combined with insufficient sediment delivery. Initial assessments of these concerns were carried out in a greenhouse setting where six nutrient enrichment treatment levels (control, NO3, NH4, PO4, SO4, and Combo [NO3?+?NH4?+?PO4?+?SO4]) were applied with and without sediment addition to 60 marsh sods from a Sagittaria lancifolia-dominated oligohaline wetland at rates simulating the Davis Pond Diversion of the Mississippi River. After 25 months, independent enrichment with N (regardless of form) and sediment was generally beneficial to wetland structure and function, while SO4 enrichment had the opposite effect, regardless of sediment addition. Simultaneous application of N and P (i.e., the Combo treatment level) ameliorated the negative impacts of SO4-loading, but the concurrent application of sediment did not, likely because the loading rate was based on a diversion that was designed to deliver water and not to maximize sediment input. Nonetheless, sediment input is critical to the sustainability of MRDC wetlands experiencing high rates of deterioration. Thus, optimizing future diversions to maximize sediment delivery, along with continued surveillance of negative nutrient effects, are recommended management decisions.  相似文献   
486.
Coastal wetlands, among the most productive ecosystems, are important global reservoirs of carbon (C). Accelerated sea level rise (SLR) and saltwater intrusion in coastal wetlands increase salinity and inundation depth, causing uncertain effects on plant and soil processes that drive C storage. We exposed peat-soil monoliths with sawgrass (Cladium jamaicense) plants from a brackish marsh to continuous treatments of salinity (elevated (~?20 ppt) vs. ambient (~?10 ppt)) and inundation levels (submerged (water above soil surface) vs. exposed (water level 4 cm below soil surface)) for 18 months. We quantified changes in soil biogeochemistry, plant productivity, and whole-ecosystem C flux (gross ecosystem productivity, GEP; ecosystem respiration, ER). Elevated salinity had no effect on soil CO2 and CH4 efflux, but it reduced ER and GEP by 42 and 72%, respectively. Control monoliths exposed to ambient salinity had greater net ecosystem productivity (NEP), storing up to nine times more C than plants and soils exposed to elevated salinity. Submersion suppressed soil CO2 efflux but had no effect on NEP. Decreased plant productivity and soil organic C inputs with saltwater intrusion are likely mechanisms of net declines in soil C storage, which may affect the ability of coastal peat marshes to adapt to rising seas.  相似文献   
487.
In this study, ten best management practices (BMP) were implemented on agricultural areas in the Saginaw River Watershed using the Soil and Water Assessment Tool model based on four targeting methods (Load per Subbasin Area Index (LPSAI), Load per Unit Area Index (LPUAI), Concentration Impact Index (CII), and Load Impact Index (LII)). The effective BMPs both for targeting and non‐targeting pollutants were contour farming (CF) (except total nitrogen reduction during total phosphorus targeting scenario), residue management 1000 kg/ha and 2000 kg/ha, strip cropping, recharge structures, terracing, and native grass (NG). In contrast, conservation tillage and no tillage did not reduce significant amount of pollutants for any combination of targeting methods and priority areas. In regard to spatial correlation between targeting methods, a strong relationship was found between the LPSAI and LPUAI methods both for the sediment and total nitrogen targeting scenarios. In addition, a similar result was found between the CII and LPSAI targeting methods. Regarding the spatiotemporal variability of BMP implementation plan, distinct change in priority area was observed in the case of NG implementation by the end of the second year; however, this impact was minimal for CF due to less pollutant reduction efficiency compared to NG. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
488.
Arabia is an important potential pathway for the dispersal of Homo sapiens (“out of Africa”). Yet, because of its arid to hyper-arid climate humans could only migrate across southern Arabia during pluvial periods when environmental conditions were favorable. However, knowledge on the timing of Arabian pluvial periods prior to the Holocene is mainly based on a single and possibly incomplete speleothem record from Hoti Cave in Northern Oman. Additional terrestrial records from the Arabian Peninsula are needed to confirm the Hoti Cave record. Here we present a new speleothem record from Mukalla Cave in southern Yemen. The Mukalla Cave and Hoti Cave records clearly reveal that speleothems growth occurred solely during peak interglacial periods, corresponding to Marine Isotope Stages (MIS) 1 (early to mid-Holocene), 5.1, 5.3, 5.5 (Eemian), 7.1, 7.5 and 9. Of these humid periods, highest precipitation occurred during MIS 5.5 and lowest during early to middle Holocene.  相似文献   
489.
490.
An upscaling algorithm has been developed that generates an irregular coarse grid that preserves flow connectivity by applying a rule-based upscaling algorithm to a fine-scale facies distribution. The algorithm is demonstrated using stochastically generated paleo-fluvial facies distributions. First, an irregular grid honoring the channel facies is created, followed by computation of effective anisotropic parameters for all coarse-grid cells. For the apparent layer-cake geometry of overbank deposits seen in outcrop, two local upscaling methods are compared: (1) the layered system approximation and (2) the mode. To assess upscaling performance, flow simulations for the original and upscaled grids are compared. The horizontal layered approximation (arithmetic mean) performs poorly, over-predicting lateral connectivity where even infrequent disconnection becomes important. Performance of the mode as an upscaling algorithm depends on the probability that a coarse-grid cell will be dominated by a single facies, and it performs surprisingly well because the upscaled grid-generation algorithm honors the channels, informing the upscaling process. Lastly, the irregular coarse grid was compared to a uniform coarse grid, showing superior performance with the irregular grid. The reduction in grid size achieved by irregular-grid generation will be a function of the geometrical complexity of the geologic objects to be honored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号