首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   39篇
  国内免费   1篇
测绘学   11篇
大气科学   18篇
地球物理   157篇
地质学   157篇
海洋学   56篇
天文学   120篇
自然地理   48篇
  2022年   3篇
  2021年   10篇
  2020年   15篇
  2019年   11篇
  2018年   22篇
  2017年   18篇
  2016年   19篇
  2015年   19篇
  2014年   12篇
  2013年   39篇
  2012年   19篇
  2011年   34篇
  2010年   24篇
  2009年   36篇
  2008年   24篇
  2007年   19篇
  2006年   15篇
  2005年   17篇
  2004年   16篇
  2003年   15篇
  2002年   19篇
  2001年   11篇
  2000年   17篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   7篇
  1983年   4篇
  1982年   8篇
  1981年   11篇
  1980年   8篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1975年   10篇
  1974年   8篇
  1973年   5篇
  1972年   4篇
排序方式: 共有567条查询结果,搜索用时 31 毫秒
511.
Trace element ratios in the Bt2 stalagmite from Botuverá cave, Southern Brazil, are explored as a proxy for changes in the local rainfall recharge during the last 116 ky. BP Mg/Ca and Sr/Ca ratios, measured with an electron microprobe, are significantly positively correlated with one another throughout the entire record, and vary in a way that is very consistent with variations of δ18O in the same speleothem during the last glacial period. We suggest that prior calcite precipitation in the vadose zone of the cave system is the main factor affecting the incorporation of Mg and Sr into calcite of the stalagmite. This interpretation is supported by trace element correlation patterns and by results from a hydrochemistry study performed in a cave located in the same region and in a similar environmental setting. Therefore, we conclude that higher (lower) Mg/Ca and Sr/Ca values are associated with lower (higher) levels of recharge into the karstic aquifer, as such conditions lead to an increase (decrease) in the volume of calcite precipitated in the unsaturated zone above the cave during dry (wet) climate periods.Trace element variations point to generally dryer (wetter) conditions during lower (high) phases of summer insolation in the southern hemisphere. These periods coincide with decreased (increased) activity of the South American summer monsoon, as revealed by δ18O stalagmite records. In addition trace element variations show that rather wet conditions persisted throughout most of the last glacial period from approximately 70 to 17 ky BP. We suggest that during this period the glacial boundary conditions, especially ice volume buildup in the northern hemisphere, played an important role for monsoon rainfall intensification in the region.  相似文献   
512.
Since 1998, the gradient of the near-Earth atmospheric electric field potential (|Ez|) has been continuously registered at Vostok Antarctic station within the scope of the joint Russian-Australian project. The data of the continuous 10-day period of fine weather in April 1998 have been selected for the following analysis. The field |Ez| behavior at Vostok station was compared with a number of lightning strokes obtained from data of the ground-based network of electromagnetic measurements. It has been found out that the average hourly values of |Ez| evidently negatively correlate with the number of intense lightning strokes. The causes of these relations are discussed. The obtained results are interpreted based on a theory of global electric circuit.  相似文献   
513.
The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (<1 Ma), cool sediments, but strong evidence for exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity.Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during structural rearrangements can be far less than the number of C-H bonds that are broken. Sample calculations indicate that, for steranes in immature sediments, the D/H ratio imparted by biosynthesis may be largely preserved in spite of significant structural changes.  相似文献   
514.
Soil distribution in high mountains reflects the impact of several soil-forming factors. Soil geomorphologists use key pedological properties to estimate ages of Quaternary deposits of various depositional environments, estimate long-term stability and instability of landscapes, and make inferences on past climatic change. Once the influence of the soil-forming factors is known, soils can be used to help interpret some aspects of landscape evolution that otherwise might go undetected.The Front Range of Colorado rises from the plains of the Colorado Piedmont at about 1700 m past a widespread, dissected Tertiary erosion surface between 2300 and 2800 m up to an alpine Continental Divide at 3600 to over 4000 m. Pleistocene valley glaciers reached the western edge of the erosion surface. Parent rocks are broadly uniform (granitic and gneissic). Climate varies from 46 cm mean annual precipitation (MAP) and 11 °C mean annual temperature (MAT) in the plains to 102 cm and −4 °C, respectively, near the range crest. Vegetation follows climate with grassland in the plains, forest in the mountains, and tundra above 3450 m. Soils reflect the bioclimatic transect from plains to divide: A/Bw or Bt/Bk or K (grassland) to A/E/Bw or Bt/C (forest) to A/Bw/C (tundra). Corresponding soil pH values decrease from 8 to less than 5 with increasing elevation. The pedogenic clay minerals dominant in each major vegetation zone are: smectite (grassland), vermiculite (forest), and 1.0–1.8 nm mixed-layer clays (tundra). Within the lower forested zone, the topographic factor (aspect) results in more leached, colder soils, with relatively thin O horizons, well-expressed E horizons and Bt horizons (Alfisols) on N-facing slopes, whereas soils with thicker A horizons, less developed or no E horizons, and Bw or Bt horizons (Mollisols) are more common on S-facing slopes. The topographic factor in the tundra results in soil patterns as a consequence of wind-redistributed snow and the amount of time it lingers on the landscape. An important parent material factor is airborne dust, which results in fine-grained surface horizons and, if infiltrated, contributes to clay accumulation in some Bt horizons. The time factor is evaluated by soil chronosequence studies of Quaternary deposits in tundra, upper forest, and plains grassland. Few soils in the study area are >10,000 years old in the tundra, >100,000 years old in the forest, and >2 million years old in the grassland. Stages of granite weathering vary with distance from the Continental Divide and the best developed is grus near the sedimentary/granitic rock contact just west of the mountain front. Grus takes a minimum of 100,000 years to form.Some of the relations indicated by the soil map patterns are: (1) parts of the erosion surface have been stable for 100,000 years or more; (2) development of grus near the mountain front could be due in part to pre-Pennsylvanian weathering; (3) a few soil properties reflect Quaternary paleoclimate; and (4) a correlation between soil development in the canyons and stream incision rates.  相似文献   
515.
A study of nutrient limitation of phytoplankton biomass production with emphasis on nitrate-nitrogen (NO3 ?) and ortho-phosphate-phosphorus (PO4 3?) was conducted in Perdido Bay, Alabama-Florida. The experimental design employed 18-1 outdoor microcosms operated in a static renewal mode. Phytoplankton growth responses (i.e., growth stimulation) measured as chlorophyll a (chl a) fell into three principal categories: primary P stimulation occurred mostly during the cooler months at the upper bay (tidal brackish) and mid bay (lower mesohaline) stations; a total of 12 out of 36 experiments; primary N stimulation occurred mostly during the warmer months primarily at the mid-bay station and infrequently at the upper and lower bay stations (upper mesohaline); a total of 7 out of 36 experiments; and N+P costimulation occurred primarily during the warmer months in the upper bay and mid bay and during both warmer and cooler months of the lower bay; a total of 17 out of 36 experiments. Primary P stimulation was generally associated with high ratios of dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphate (DIP) (ratio range: 18 to 288). Conversely, primary N stimulation was associated with decreasing DIN:DIP ratios (range 8–46). Redfield ratios of particulate organic N (PON) to particulate organic P (POP) often indicated N limitation (i.e., values often less than 10). PON:chl a ratios often indicated N sufficiency, but three occasions were noted where PON:POP and PON:chl a ratios were not congruent. It is difficult to reconcile the inorganic and organic N and P ratios with the relatively low DIP and DIN concentrations. The phytoplankton assemblage appeared not to be strongly nutrient-limited but, given a nutrient increase, responded differentially to N and P, both seasonally and along the longitudinal salinity gradient. Grazing pressure in concert with nutrient limitation was advanced as an hypothesis to explain N+P co-limitation.  相似文献   
516.
The karstlands of Trinidad and Tobago, their land use and conservation   总被引:2,自引:0,他引:2  
The karst landscapes of Trinidad and Tobago, although restricted in area, present a previously undocumented array of tropical karst landforms, including karren, caves, springs, valley systems, and a range of dolines or sinkholes, including an area of polygonal cockpit karst. The karstlands are located primarily in the Northern and Central Ranges of Trinidad and in the southwestern portion of Tobago, and they have developed on carbonate rocks ranging in age from Jurassic to Quaternary. Associated with them is a range of vegetation types and faunal communities, many of which have been much altered by human land management, including forestry and agriculture. Quarrying has destroyed much of the karst in the western part of Trinidad, and urban development and tourism have taken their toll too, especially in the Lowlands of western Tobago. Little of the karst is incorporated within existing protected areas.  相似文献   
517.
Despite the great potential of peat bogs as climatic archives, to date only few studies have focused on the climatic controls on cellulose isotopic composition in modern bog plants. This study attempts to calibrate plant-climate relationships by sampling a set of modern plant species (both vascular plants and mosses) and bog surface waters along an altitude transect in Switzerland. Isotopic analyses of water samples show that the δ18O-values of surface bog waters follow the trend of precipitation despite significant scatter in the data set. Detailed sampling of surface waters within one bog shows that δ18O-values vary widely and are closely related to the micro-topography of the bog surface. More enriched 18O/16O ratios in water samples collected from small raised hummocks than the ones collected from hollows are documented in both horizontal and vertical profiles. A δ18O-δD plot indicates that the process leading to the isotopic enrichment of the uppermost surface waters is evaporation, greater above Sphagnum covered hummocks than above open pools. To investigate the implications of such high variability of source water for plant α-cellulose δ18O-values, a detailed study of both surface water and α-cellulose δ18O-values within one site is conducted. The large δ18O variability observed in surface waters is found to be considerably smoothed in α-cellulose (by a factor of 5-10 depending on the plant species). This indicates that the water used by plant photosynthetic processes reflects the isotopic composition of the average annual precipitation. This points to a source water level for plants of a few decimeters where the variations are smaller than at the air-water interface. The response of the α-cellulose δ18O to the environmental gradient along the altitude transect varies considerably from species to species. For most of the species studied, the δ18O-values decrease with altitude, following the trends of δ18O-values in precipitation and in surface water samples. Some species, the cotton sedge Eriophorum vaginatum and the moss Sphagnum capillifolium, show statistically significant δ18O relationships to an altitude of −1.8‰/km and −2.9‰/km respectively. However, some other plant species, Calluna vulgaris, Vaccinium uliginosum, Andromeda poliflora, Carex pauciflora, Sphagnum cuspidatum and Sphagnum magellanicum, do not, or only partially, reflect changes in climatic parameters associated with an altitude increase. Furthermore, changes in relative humidity, which are not correlated with altitude, are found to explain a large part of the variability in δ18O-values for the sedge Carex pauciflora and the moss Sphagnum cuspidatum. Therefore, this study confirms the importance of species-specific studies when interpreting 18O/16O ratios of macrofossils along a fossil peat sequence as a record of past climate changes. Our study allows to extend the mechanistic model that isotopically links source water and cellulose to the physiological specificities of sedges and mosses. A comparison of the modeled and calculated net biological fractionation factors for Eriophorum vaginatum and Sphagnum capillifolium reveals that these two species appear to have a more homogeneous leaf reservoir than trees.  相似文献   
518.
The magnitude of shear stress in the lithosphere is bounded from below by the apparent stress and stress drop during intraplate earthquakes. Apparent stresses and stress drops for a number of mid-plate earthquakes are calculated from the earthquake magnitude, SH wave amplitude spectra, and estimates of the length of the fault zone. Apparent stresses vary between 0.1 and 2 bars, ifm b is used as a measure of seismic energy, and stress drops lie between 2 and 70 bars. There is no systematic difference in either apparent stress or stress drop between these intraplate events and typical plate boundary earthquakes. These bounds on intraplate shear stresses are consistent with the inference from current models of plate tectonic driving forces that regional stress differences in the plates are typically on the order of 100 bars. The highest stress drops measured for midplate earthquakes under this model represent nearly total release of local tectonic stress.  相似文献   
519.
Double-couple point-source parameters for 11 of the largest intraplate earthquakes in the northern Indian Ocean during the last 20 y were determined from a formal inversion of long-period P and SH waveforms. Nine of the events have centroid depths at least 17 km below the seafloor, well into the upper mantle; two have centroid depths as great as 39 km. Using the source mechanisms of these earthquakes, we distinguish two major intraplate tectonic provinces in the northern Indian Ocean. To the west of the Ninetyeast Ridge, in the southern Bay of Bengal, intraplate earthquakes have thrust-faulting mechanisms with P axes oriented N-S. The centroid depths of these earthquakes range from 27 to 39 km below the seafloor. Lithospheric shortening in this region is thus accomplished by thrust faulting in the strong core of the oceanic upper mantle, while other geophysical evidence suggests that shallow sedimentary and crustal layers apparently deform predominantly by folding. In the immediate vicinity of the Ninetyeast Ridge, earthquakes display strike-slip mechanisms with left-lateral motion on planes parallel to the ridge. This type of faulting occurs from at least 10°S to the northern end of the Ninetyeast Ridge near 10°N, where the ridge meets the Sunda Arc. Seismic activity diminishes to the east of the Ninetyeast Ridge, but is also characterized by strike-slip faulting. Despite these variations in deformational style, the inferred orientation of greatest compressive stress in the northern Indian Ocean displays a consistent long-wavelength pattern over a large portion of the Indian plate, varying smoothly from nearly N-S in the Bay of Bengal to NW-SE in the northeastern Indian Ocean. This plate-wide stress pattern and the high level of intraplate seismicity in the northern Indian Ocean are likely the results of substantial resistance, along the Himalayan continental collision zone, to the continued northward motion of the western portion of the Indian plate. Oceanic intraplate earthquakes in other regions, where the level of deviatoric stress associated with the long-wavelength part of the stress field is likely to be smaller, need not be comparably reliable indicators of the plate-wide stress field.  相似文献   
520.
The rate of the olivine→spinel transition at high overpressure increases with diminishing grain size, or increasing shear stress, temperature, and possibly pressure. The transition rate is higher in Fe-rich compositions than in Mg-rich compositions, and it can be greatly increased by adding water or other mineralizers. Of all variables controlling the kinetics of the olivine→spinel transition in the mantle, temperature is the most critical. The olivine→spinel transition can be suppressed below 500°C in Mg-rich compositions, even in geological period of time. Since the temperature within a downgoing slab varies greatly according to different models of calculation, it is not clear at this stage whether the temperature is low enough to suppress the olivine→spinel transition. If the olvine→spinel transition cannot be suppressed, it may not be responsible for the genesis of deep-focus earthquakes. However, the rise of the olivine-spinel boundary in the cold interior of downgoing slabs provides an additional driving force for the plunging of these slabs. The distortion of the olivine-spinel boundary may also control the stress distribution in downgoing slabs and may be responsible for the observed alignment of principal stress axes of deep-focus earthquakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号